a2 United States Patent

Henry et al.

US009461818B2

US 9,461,818 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD FOR ENCRYPTING A PROGRAM
FOR SUBSEQUENT EXECUTION BY A
MICROPROCESSOR CONFIGURED TO
DECRYPT AND EXECUTE THE
ENCRYPTED PROGRAM

(71) Applicant: VIA Technologies, Inc., New Taipei

(TW)

(72) Inventors: G. Glenn Henry, Austin, TX (US);

Terry Parks, Austin, TX (US); Brent

Bean, Austin, TX (US); Thomas A.

Crispin, Austin, TX (US)

(73)

Assignee: VIA TECHNOLOGIES, INC., New

Taipei (TW)

Notice:

")

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 399 days.

@
(22)

Appl. No.: 14/066,350

Filed: Oct. 29, 2013

(65) Prior Publication Data

US 2014/0195821 Al Jul. 10, 2014

Related U.S. Application Data

(62)
21, 2011, now Pat. No. 8,639,945.

(60)
25, 2010.

Int. CL.
GO6F 11/30
HO4L 9/08

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC

Division of application No. 13/091,641, filed on Apr.

Provisional application No. 61/348,127, filed on May

HO04L 9/0827 (2013.01); GO6F 9/30003

(2013.01); GOGF 9/30079 (2013.01);

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,737.975 A
5,353,421 A

4/1988 Shafer
10/1994 Emma et al.

(Continued)
OTHER PUBLICATIONS

Lee, Ruby B. et al. “Architecture for Protecting Critical Secrets in
Microprocessors.” http://ieeexplore.iece.org.stamp/stamp jsp?tp=
&arnumber=1431541. pp. 1-12 Proceedings of the 32nd Interna-
tional Symposium on Computer Architecture (ISCA’05) 2005.

(Continued)

Primary Examiner — Joshua Joo

Assistant Examiner — Younes Naji

(74) Attorney, Agent, or Firm — FEric W. Cernyar; James W.
Huffman

(57) ABSTRACT

A method for encrypting a program for subsequent execu-
tion by a microprocessor configured to decrypt and execute
the encrypted program includes receiving an object file
specifying an unencrypted program that includes conven-
tional branch instructions whose target address may be
determined pre-run time. The method also includes analyz-
ing the program to obtain chunk information that divides the
program into a sequence of chunks each comprising a
sequence of instructions and that includes encryption key
data associated with each of the chunks. The encryption key
data associated with each of the chunks is distinct. The
method also includes replacing each of the conventional
branch instructions that specifies a target address that is
within a different chunk than the chunk in which the
conventional branch instruction resides with a branch and
switch key instruction. The method also includes encrypting
the program based on the chunk information.

(Continued) 18 Claims, 15 Drawing Sheets
oA s
=
Eoy
e, B
KEY EXPANDER 182 AODRESS
—

174 DECRVPTIONKEY —,

[

FETCHUN 104

MO 15

zeRoES

waﬁl

,E

44 GONTROL REGISTER —

XOR 15

125

162 PLAN TEXT

SECURE
MENCRY
AREA 12

oy
S RS
FILE 24

v

NT L8

DEGOLE

EXECUTION UNITS 112

RETIRE NI 112

US 9,461,818 B2

Page 2
(51) Int. CL 2004/0250090 Al 12/2004 Crispin et al.
2005/0166069 Al 7/2005 Hashimoto et al.
GOGF 12/08 (2016.01) 2006/0015748 Al 1/2006 Goto et al.
GO6F 21/52 (2013.01) 2006/0041747 Al 2/2006 Okumura et al.
GOGF 21/71 (2013.01) 2006/0136715 Al 6/2006 Han et al.
GOG6F 21/72 (2013.01) 2006/0239453 Al 10/2006 Halpern
2006/0242391 Al 10/2006 Elwood
GO6E 9730 (2006.01) 2008/0019504 Al 1/2008 Han et al.
GOGF 21/60 (2013.01) 2008/0091920 Al 4/2008 Shaw et al.
Ho4L 9/06 (2006.01) 2009/0217017 Al 82009 Alexander et al.
GO6F 21/54 (2013.01) 2010/0017625 Al 1/2010 Johnson et al.
(52) US.Cl 2010/0115286 AL* 52010 Hawkes GOGF 12/1408
->. LA 713/189
CPC GO6F9/30178 (2013.01); GOGF 9/30189 2011/0047361 Al 2/2011 Roussel
(2013.01); GO6F 12/0875 (2013.01); GO6F 2011/0167243 Al 7/2011 Yip et al.
21/52 (2013.01); GOGF 21/54 (2013.01); 2011/0214016 Al 9/2011 Gschwind
GOGF 21/602 (2013.01); GO6F 21/71 20110296202 Al 122011 Henry etal
. . enry et al.
(2013.01); GOGF 21/72 (2013.01); HO4L 2011/0296204 Al 12/2011 Henry et al.
9/0618 (2013.01); HO4L 9/0861 (2013.01); 2011/0296205 Al 12/2011 Henry et al.
HO4L 9/0891 (2013.01); HO4L 9/0894 2011/0296206 Al 12/2011 Henry et al.
(2013.01); GOGF 2212/402 (2013.01); GO6F 2012/0096282 Al 4/2012 Henry et al.

(56)

5,642,500
5,864,697
6,118,870
6,336,178
6,453,278
6,674,536
6,704,871
6,707,463
6,996,725
7,036,003
7,117,372
7,130,951
7,260,217
7,321,910
7,447,882
7,451,327
7,472,263
7,529,368
7,532,722
7,590,869
7,694,151
7,844,053
7,853,778
7,865,733
7,900,055
7,996,685
8,135,962
8,233,607

8,468,364
2002/0101995
2003/0046563
2003/0149869
2004/0177257

2212/452 (2013.01); GOGF 2221/2107
(2013.01); HO4L 2209/12 (2013.01); HO4L

2209/20 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

A
A
A
Bl
Bl
B2
Bl
Bl
B2
Bl
Bl
Bl
Bl
B2
B2
B2
B2
B2
B2
B2
Bl
B2
B2
B2
B2
B2
B2
BL*

B2
Al
Al
Al
Al*

6/1997
1/1999
9/2000
1/2002
9/2002
1/2004
3/2004
3/2004
2/2006
4/2006
10/2006
10/2006
8/2007
1/2008
11/2008
11/2008
12/2008
5/2009
5/2009
9/2009
4/2010
11/2010
12/2010
1/2011
3/2011
8/2011
3/2012
7/2012

6/2013
8/2002
3/2003
8/2003
9/2004

Inoue

Shiell

Boyle et al.

Favor

Favor et al.

Long et al.

Kaplan et al.

Gibson et al.

Ma et al.

Sunayama et al.

Trimberger et al.

Christie et al.

Carlson

Crispin et al.

Elwood

DaCosta

Yokoi

Henry et al.

Crispin et al.

Hashimoto

Johnson et al.

Crispin et al.

Roussel

Goto et al.

Henry et al.

Jin et al.

Strongin et al.

Ambrose H04M 3/42212
379/201.01

Goto

Hashimoto et al.

Ma et al.

Gleichauf

Fujinawa GOGF 21/6218
713/189

OTHER PUBLICATIONS

Boneh, Dan et al. “Hardware Support for Tamper-Resistant and
Copy-Resistant Software.” Nov. 14, 1999. pp. 1-13. Downloaded
Mar. 24, 2010 at ftp://db.stanford.edu/pub/cstr/reports/cs/tn/00/97/
CS-TN-0097 pdf.

KC, Gaurav S. et al. “Countering Code-Injection Attacks with
Instruction-Set Randomization.” 2003. pp. 1-10. Downloaded Mar.
24, 2010 at http://www.prevelakis.net/Papers/instructionrandomiza-
tion.pdf.

ASICS ws Product Overview. “16 Bit RISC DSP IP Core.” pp. 1-2.
Downloaded Mar. 24, 2010 at http://www.asics.we/doc/rdsp__brief.
pdf.

Sovarel, Ana Nora et al. “Where’s the FEEB? The Effectiveness of
Instruction Set Randomization.” pp. 1-16. Downloaded Mar. 24,
2010 at http://www.cs.virginia.edu/feeb/usenix05.pdf.

Ranger, Colbe et al. “Evaluating MapReduce for Multi-core and
Multiprocessor Systems.” Computer Systems Laboratory, Stanford
University. Http://pages.cs.wisc.edu/~david/courses/cs758/
Fall2009/papers/mapreduce.pdf 2007 pp. 1-12.

Barrantes, FElena Gabriela et al. “Randomized Instruction Set Emu-
lation to Disrupt Binary Code Injection Attacks.” CCS ’03, Oct.
27-30, 2003, Washington, DC, USA. Http://www.cs.columbia.
edu/~locasto/projects/candidacy/papers/barrantes2003randomized.

pdfiBarrantes et al. pp. 1-10.

Yang, Jun et al. “Improving Memory Encryption Performance in
Secure Processors.” IEEE Transactions on Computers, vol. 54, No.
S, May 2005 pp. 630-640.

Song et al. “The PowerPC 604 RISC Microprocessor.” downloaded
from http://users.ece.gatech.edu/~scotty/7102/PPC604.pdf Oct.
1994, pp. 8-17.

Duvvuru, Sreeram et al. “Evaluation of a Branch Target Address
Cache.” Proceedings of the 28th Hawaii International Conference
on System Sciences. 1995. pp. 173-180.

Rosati, Tony. “A High Speed Data Encryption Processor for Public
Key Cryptography.” IEEE 1989 Custom Integrated Circuits Con-
ference. Http://ieeexplore.ieee.org/stamp.jsp?tp=
&arnumber=5726207 pp. 12/3/1-12.3.5.

* cited by examiner

U.S. Patent Oct. 4, 2016 Sheet 1 of 15 US 9,461,818 B2

FIG. 1 100
| INSTRUCTION CACHE 102 |<— ¥
106 INSTRUCTION DATA (MAY BE ENCRYPTED) -
MASTER KEY REGISTER FETCH
FILE 142 ADDRESS
_ GENERATOR
164
72—
\ 4 134 FETCH —"
ADDRESS
KEY EXPANDER 152 |
ZEROES
174 DECRYPTION KEY — | 176 — | E 148
¥ 144 CONTROL REGISTER ——
| MUX 154 |e
128
78— d
A\ 4 \ 4
| XOR 156
FETCH UNIT 104
162 PLAIN TEXT INSTRUCTION DATA —
SECURE KEY v L 2
MEMORY REGISTER EF#ZASGS ffg{ | DECODE UNIT 108
AREA 122 FILE 124 0 =2 i
v v v v MICRO-
CODE UNIT
132
v v ¥

| EXECUTION UNITS 112

!

RETIRE UNIT 114

U.S. Patent Oct. 4, 2016 Sheet 2 of 15 US 9,461,818 B2

' e 104
142 MASTER KEY REGISTER FILE
4
3 134 FETCH ADDR —
2
1
0
[128
172
A\ 4
MUX‘A: 212 MUX‘B: 214 | —— N
< T IS
X128 k128
234 23
\ 4
ROTATER | _ 174]
m <«
F 128
238
L 2 INSTRUCTION
e CACHE 102
ADDER/SUBTRACTOR 218 |« [
152 KEY EXPANDER — |
ZEROES
174 DECRYPTIONKEY — | 176 — |
- - 144 CONTROL REGISTER .
k28 128
\ 4
| MUX 154 I: E 148
108 128
/] /]
178 108
\ 4 A\ 4
| XOR 156
128

162 PLAIN TEXT INSTRUCTION DATA —,

U.S. Patent Oct. 4, 2016 Sheet 3 of 15 US 9,461,818 B2

FIG. 3

APPLY FETCH ADDRESS TO INSTRUCTION CACHE TO BEGIN FETCHING 16 BYTES OF INSTRUCTION
DATA (MAY BE ENCRYPTED OR MAY BE PLAIN TEXT) 302

v

SELECT MASTER KEY REGISTER PAIR BASED ON VALUE OF FETCH ADDRESS BITS [10:8] 304

v

ROTATE FIRST SELECTED MASTER KEY BASED ON VALUE OF FETCH ADDRESS [7:4] 306

v

ADD/SUBTRACT (BASED ON FETCH ADDRESS BIT [7]) ROTATED MASTER KEY TO/FROM SECOND
SELECTED MASTER KEY TO PRODUCE 16-BYTE KEY RESULT 308

NO

ENCRYPTED PROGRAM? 312

XOR 16-BYTE KEY RESULT WITH 16 BYTES OF FETCHED ENCRYPTED INSTRUCTION DATA TO PRODUCE
16 BYTES OF PLAIN TEXT INSTRUCTION DATA 314

v

XOR ZEROES WITH 16 BYTES OF FETCHED ENCRYPTED INSTRUCTION DATA TO PROVIDE PLAIN TEXT
INSTRUCTION DATA TO DECODE UNIT 316

FIG. 4
EFLAGS REGISTER e

STANDARD X86 EFLAGS BITS 40

m
s
N

U.S. Patent Oct. 4, 2016 Sheet 4 of 15 US 9,461,818 B2

FIG. 5
LOAD KEY INSTRUCTION e

| OPCODE 502 | KEY REGISTER FILE DESTINATION ADDR 504 | SMA SOURCE ADDR 506 |

FIG. 6
SWITCH KEY INSTRUCTION

600
/—

| OPCODE 602 | KEY REGISTER FILE INDEX 604 |

FIG. 7

| DECODE SWITCH KEY INSTRUCTION AND TRAP TO MICROCODE 702 |

v

| LOAD MASTER KEY REGISTERS FROM KEY REGISTER FILE AT INDEX 704 |

v

BRANCH TO NEXT SEQUENTIAL X86 INSTRUCTION (I.E., THE X86 INSTRUCTION AFTER THE SWITCH KEY
INSTRUCTION), WHICH CAUSES FLUSH OF PIPELINE AND FETCH UNIT 706

v

| BEGIN FETCHING AND DECRYPTING USING NEW MASTER KEY REGISTER VALUES 708 |

FIG. 8 ’/—800
CHUNK 0
SWITGH KEY IS LAST INSTRUCTION
AT END OF CHUNK —
CHUNK 1
SWITGH KEY IS LAST INSTRUCTION

AT END OF CHUNK

CHUNKN

U.S. Patent Oct. 4, 2016 Sheet 5 of 15 US 9,461,818 B2

FIG. 9
BRANCH AND SWITCH KEY INSTRUCTION

900
/—

| OPCODE 902 | KEY REGISTER FILE INDEX 904 | BRANCH INFO 906 |

FIG. 10

| DECODE BRANCH AND SWITCH KEY INSTRUCTION AND TRAP TO MICROCODE 1002 |

v

| RESOLVE BRANCH DIRECTION AND TARGET ADDRESS 1006 |

NOP (L.E., DO NOT SWITCH
KEYS OR BRANCH) 1012

| LOAD MASTER KEY REGISTERS FROM KEY REGISTER FILE AT INDEX 1014 |

v

| BRANCH TO RESOLVED TARGET ADDRESS, WHICH CAUSES FLUSH OF PIPELINE AND FETCH UNIT 1016 |

v

| BEGIN FETCHING AND DECRYPTING USING NEW MASTER KEY REGISTER VALUES 1018 |

FIG. 11

POST-PROCESSOR RECEIVES OBJECT FILE (THAT INCLUDES ONLY BRANCHES WHOSE TARGET ADDRESS
MAY BE DETERMINED PRE-RUN TIME) AND ANALYZES TARGET ADDRESSES OF BRANCH INSTRUCTIONS IN
PROGRAM 1102

v

REPLACE INTER-CHUNK BRANCHES WITH BRANCH AND SWITCH KEY INSTRUCTIONS HAVING APPROPRIATE
KEY REGISTER FILE INDEX VALUES BASED ON CHUNK INTO WHICH TARGET ADDRESS FALLS 1104

v

ENCRYPT PROGRAM BASED ON CHUNKS 1106

U.S. Patent Oct. 4, 2016 Sheet 6 of 15 US 9,461,818 B2

FIG. 12
BRANCH AND SWITCH KEY INSTRUCTION
(ALTERNATE EMBODIMENT)
/—1200
| OPCODE 1202 | BRANCH INFO 906 |
FIG. 13 e
0| ADDRESSRANGE 1302 KEY REGISTER FILE INDEX 1304
1| ADDRESS RANGE 1302 KEY REGISTER FILE INDEX 1304
2| ADDRESS RANGE 1302 KEY REGISTER FILE INDEX 1304
.| ADDRESS RANGE 1302 KEY REGISTER FILE INDEX 1304
N-1] ADDRESS RANGE 1302 KEY REGISTER FILE INDEX 1304
FIG. 14

| DECODE BRANCH AND SWITCH KEY INSTRUCTION AND TRAP TO MICROCODE 1402 |
| RESOLVE BRANCH DIRECTION AND TARGET ADDRESS 1406 |

NOP (I.E., DO NOT SWITCH
KEYS OR BRANCH) 1412

LOOKUP TARGET ADDRESS IN TABLE TO OBTAIN INDEX VALUE ASSOCIATED WITH ADDRESS RANGE INTO
WHICH TARGET ADDRESS FALLS AND LOAD MASTER KEY REGISTERS FROM KEY REGISTER FILE AT INDEX
NESE)

v

| BRANCH TO RESOLVED TARGET ADDRESS AND CAUSE FLUSH OF PIPELINE AND FETCH UNIT 1416 |

v

| BEGIN FETCHING AND DECRYPTING USING NEW MASTER KEY REGISTER VALUES 1418 |

U.S. Patent Oct. 4, 2016 Sheet 7 of 15 US 9,461,818 B2

FIG. 15
BRANCH AND SWITCH KEY INSTRUCTION
(ALTERNATE EMBODIMENT)
/—1500
| OPCODE 1502 | BRANCH INFO 908 |
FIG. 16 e
0| ADDRESSRANGE 1302 SMA ADDR 1604
1| ADDRESS RANGE 1302 SMA ADDR 1604
2| ADDRESS RANGE 1302 SMA ADDR 1604
.| ADDRESS RANGE 1302 SMA ADDR 1604
N-1| ADDRESS RANGE 1302 SMA ADDR 1604
FIG. 17

| DECODE BRANCH AND SWITCH KEY INSTRUCTION AND TRAP TO MICROCODE 1402 |

v

| RESOLVE BRANCH DIRECTION AND TARGET ADDRESS 1406 |

NOP (L.E., DO NQOT SWITCH
KEYS OR BRANCH) 1412

LOOKUP TARGET ADDRESS IN TABLE TO OBTAIN SMA ADDRESS ASSOCIATED WITH ADDRESS RANGE INTO
WHICH TARGET ADDRESS FALLS AND LOAD MASTER KEY REGISTERS FROM SMA ADDRESS 1714

v

| BRANCH TO RESOLVED TARGET ADDRESS AND CAUSE FLUSH OF PIPELINE AND FETCH UNIT 1416 |

| BEGIN FETCHING AND DECRYPTING USING NEW MASTER KEY REGISTER VALUES 1418 |

U.S. Patent Oct. 4, 2016 Sheet 8 of 15 US 9,461,818 B2

FIG. 18

POST-PROCESSOR RECEIVES OBJECT FILE AND ANALYZES TARGET ADDRESSES OF BRANCH INSTRUCTIONS
IN PROGRAM 1802

v

POST-PROCESSOR CREATES CHUNK ADDRESS RANGE TABLE (FIG. 13/16) FOR INCLUSION IN OBJECT FILE
1803

v

REPLACE PRE-RUN-TIME-TARGET ADDRESS-DETERMINABLE INTER-CHUNK BRANCHES WITH FIG. 9-TYPE
BRANCH AND SWITCH KEY INSTRUCTIONS HAVING APPROPRIATE KEY REGISTER FILE INDEX VALUES BASED
ON CHUNK INTO WHICH TARGET ADDRESS FALLS 1804

v

REPLACE RUN-TIME-ONLY-TARGET ADDRESS-DETERMINABLE BRANCHES WITH FIG. 12/15-TYPE BRANCH AND
SWITCH KEY INSTRUCTIONS 1805

v

ENCRYPT PROGRAM BASED ON CHUNKS 1806

U.S. Patent Oct. 4, 2016 Sheet 9 of 15 US 9,461,818 B2

FIG. 19

| E BITS IN EFLAGS AND FETCH UNIT CONTROL REGISTER ARE CLEARED BY PROCESSOR RESET 1902 |

| FETCH PLAIN TEXT INSTRUCTtNS AND EXECUTE THEM 1904 |
| REQUEST TO RUN AN EN&RYPTED PROGRAM 1906 |
| LOAD MASTER KEY REGIST&RS WITH INITIAL KEYS 1908 |
| SET E BITS IN EFLAGS AND¢ CONTROL REGISTER 1916 |
| FETCH ENCRYPTED INSTRUCTIONS Al\t) DECRYPT AND EXECUTE THEM 1918 |
| RECEIVE INTERRU¢PTING EVENT 1922 |

v

| SAVE EFLAGS 1924 |

| CLEAR E BITS IN EFLAGS AND FET%H UNIT CONTROL REGISTER 1926 |
[FETCH(WITHOUT DECRYPTING) AND EXECUTE I*EW PROGRAM (PLAIN TEXT) INSTRUCTIONS 1928 |
| NEW PROGRAM EXECUTEt IRET INSTRUCTION 1932 |
| RESTORE E¢FLAGS 1934 |
| UPDATE CONTROL REGISTER V¢V|TH EFLAGS E BIT VALUE 1938 |
| BRANCH TO SAVED INSTRUCTION POINTER, WHICH¢CAUSES FLUSH OF PIPELINE AND FETCH UNIT 1942 |

v

| FETCH ENCRYPTED INSTRUCTIONS AND DECRYPT AND EXECUTE THEM 194 |

U.S. Patent Oct. 4, 2016 Sheet 10 of 15 US 9,461,818 B2

FIG. 20

REQUEST TO RUN NEW ENCRYPTED PROGRAM 2002

ENCRYPTED PROGRAM
RUNNING ALREADY? 2004

WAIT UNTIL ENCRYPTED
PROGRAM COMPLETES 2006

NO

Y
ALLOW NEW ENCRYPTED PROGRAM TO RUN 2008

FIG. 21
EFLAGS REGISTER e 128
| £ 402 [nDEX 2104 STANDARD X86 EFLAGS BITS 408 |
FIG. 22

| REQUEST TO RUN NEW ENCRYPTED PROGRAM 2202

NO WAIT UNTIL KRF SPACE BECOMES

?
KRF SPACE AVAILABLE? 2204 AVAILABLE 2208

ALLOCATE KRF SPACE TO NEW PROGRAM AND
POPULATE EFLAGS INDEX FIELD ACCORDINGLY 2208

| LOAD ALLOCATED KRF SPACE WITH KEY VALUES 2212 |

| LOAD MASTER KEY REGISTERS FROM KRF 2214 |

| SET E BITS IN EFLAGS AND CONTROL REGISTER 2216 |

U.S. Patent Oct. 4, 2016 Sheet 11 of 15 US 9,461,818 B2

FIG. 23

| RUNNING PROGRAM EXECUTES IRET 2302 |

v

| RESTORE EFLAGS 2304 |

NO

EFLAGS E BIT SET? 2306

| LOAD MASTER KEY REGISTERS FROM KEY REGISTER FILE AT EFLAGS INDEX 2308 |

i
«

Y
| UPDATE CONTROL REGISTER E BIT WITH EFLAGS E BIT VALUE 2312 |

v

| BRANCH TO SAVED INSTRUCTION POINTER, WHICH CAUSES FLUSH OF PIPELINE AND FETCH UNIT 2314 |

!

| FETCH INSTRUCTIONS (AND DECRYPT, IF NECESSARY) AND EXECUTE THEM 2316 |

U.S. Patent Oct. 4, 2016 Sheet 12 of 15 US 9,461,818 B2

FIG. 24

KEY REGISTER FILE REGISTER 124 K 2402

FIG. 25

| REQUEST TO RUN NEW ENCRYPTED PROGRAM 2202 |

ALLOCATE IN-USE KRF SPACE TO
CLOBBER AND SET ITS K BIT AND
POPULATE EFLAGS INDEX FIELD

ACCORDINGLY 2506

l

TO BLOCK 2208 OF FIG. 22 TO BLOCK 2212 OF FIG. 22

KRF SPACE AVAILABLE? 2204

FIG. 26

| RUNNING PROGRAM EXECUTES IRET 2302 |

v

| RESTORE EFLAGS 2304 |

NO

EFLAGS E BIT SET? 2306

YES GENERATE EXCEPTION TO
RE-LOAD KEYS OF RESTORED
PROGRAM INTO KRF 2609

K BIT SET? 2607

NO

il
)l
A 4
Y

| LOAD MASTER KEY REGISTERS FROM KEY REGISTER FILE AT EFLAGS INDEX 2308 |

»]
<

A 4
| UPDATE CONTROL REGISTER WITH EFLAGS E BIT VALUE 2312 |

¥

BRANCH TO SAVED INSTRUCTION POINTER, WHICH CAUSES FLUSH OF PIPELINE AND FETCH UNIT 2314 |

v

| FETCH INSTRUCTIONS (AND DECRYPT, IF NECESSARY) AND EXECUTE THEM 2316 |

U.S. Patent Oct. 4, 2016 Sheet 13 of 15 US 9,461,818 B2

FIG. 27 /_100

INSTRUCTION
BRANCH TARGET ADDRESS CACHE (BTAC) 2702 CACHE 102
2708 TINT,—,, 2706 TARGET ADDRESS 106
2714 TYPE
“__2712 KRF INDEX
KEY REGISTER FILE 124
y
KEY A 4 L 4
SWITCH | MASTER KEY REGISTER FETCH
LOGIC d FILE 142 ADDRESS
2719 GENERATOR
—_— 164
172 LS
4 134 FETCH
ADDRESS
KEY EXPANDER 152 |«
174 — |
ZEROES
176 —
\ 4
| MUX 154
128
/]
178 —
A 4 A 4
FETCH UNIT 104 | XOR 156

162

U.S. Patent Oct. 4, 2016 Sheet 14 of 15 US 9,461,818 B2

FIG. 28

F— 2802 BTAG ARRAY e 2702

BTAC ENTRY 2808
BTAC ENTRY 280
134 FETCH ADDRESS 4ﬂ\ N BTAC ENTRY 280

BTAC ENTRY 280
BTAC ENTRY 280
BTAC ENTRY 2808
BTAC ENTRY 2808

[Co
jCo

o
{oe]

Co
|Co

co
{oe)

[Co

o

2706 TARGET ADDRESS /i .- 2T14TYPE

—

2708 INT—, ~_— 2712 KRF INDEX

FIG. 29 /o

|VAL|D 2902 |TAG 2004 | TARGET ADDRESS 2906 |T/NT MlKEY REGISTER FILE INDEX m| TYPE 2914 |

FIG. 30

| EXECUTE BRANCH AND SWITCH KEY INSTRUCTION (SEE FIG. 32) 3002 |

v

| ALLOCATE BTAC ENTRY AND POPULATE WITH T/NT, TARGET ADDRESS, KRF INDEX, AND TYPE 3004 |

U.S. Patent Oct. 4, 2016 Sheet 15 of 15 US 9,461,818 B2

FIG. 31

| APPLY FETCH ADDRESS TO INSTRUCTION CACHE AND BTAC 3102

v

FETCH ADDRESS HITS IN BTAC ON BRANCH AND SWITCH KEY INSTRUCTION AND BTAC QUTPUTS
PREDICTIONS OF T/NT, TARGET ADDRESS, KRF INDEX, AND TYPE 3104

NO | PIPE DOWN THAT NOT TAKEN
PREDICTION WAS MADE 3108

YES

UPDATE FETCH ADDRESS BASED ON PREDICTED TARGET ADDRESS 3112

v

KEY SWITCH LOGIC UPDATES MASTER KEY REGISTERS WITH KEYS FROM KEY REGISTER FILE AT PREDICTED
KRF INDEX 3114

v

| CONTINUE FETCHING AND DECRYPTING USING NEW MASTER KEY REGISTER VALUES 3116

FIG. 32

| DECODE BRANCH AND SWITCH KEY INSTRUCTION AND TRAP TO MICROCODE 1002 |

| RESOLVE BRANCH DIRECTION AND TARGET ADDRESS 1006 |
PREDICTED? 3208
YES
YES
CORRECT? 3214
NO

NT
PREDICTION? 3216
T

RESTORE MASTER KEY REGISTERS AND BRANCH TO NEXT SEQUENTIAL X86 INSTRUCTION 3222

TO DECISION BLOCK
1008 OF FIG. 10

TO BLOCK 1014 OF
FIG. 10

US 9,461,818 B2

1
METHOD FOR ENCRYPTING A PROGRAM
FOR SUBSEQUENT EXECUTION BY A
MICROPROCESSOR CONFIGURED TO
DECRYPT AND EXECUTE THE
ENCRYPTED PROGRAM 5

CROSS REFERENCE TO RELATED
APPLICATION(S)

This application is a divisional of U.S. Non-Provisional 10
application Ser. No. 13/091,641, filed Apr. 21, 2011, which
application claims priority based on U.S. Provisional Appli-
cation, Ser. No. 61/348,127, filed May 25, 2010, entitled
MICROPROCESSOR THAT FETCHES AND DECRYPTS
ENCRYPTED INSTRUCTIONS IN SAME TIME AS 15
PLAIN TEXT INSTRUCTIONS, each of which is hereby
incorporated by reference in its entirety.

This application is related to the following co-pending
U.S. Patent Applications, each of which is incorporated by
reference herein for all purposes.

2

a modified version of the bochs-x86 Pentium emulator.
Others have pointed out deficiencies of the approach. See for
example, Where’s the FEEB? The Effectiveness of Instruc-
tion Set Randomization, by Ana Nora Sovarel, David Evans,
and Nathanael Paul, http://www.cs.virginia.edu/feeb.

BRIEF SUMMARY OF INVENTION

In one aspect, the present invention provides a method for
encrypting a program for subsequent execution by a micro-
processor configured to decrypt and execute the encrypted
program. The method includes receiving an object file
specifying an unencrypted program that includes conven-
tional branch instructions whose target address may be
determined prior to the time in which the microprocessor
runs the program. The method also includes analyzing the
program to obtain chunk information. The chunk informa-
tion divides the program into a sequence of chunks. Each of
the chunks comprises a sequence of instructions. The chunk
information further comprises encryption key data associ-

Ser. No. Filing Date Title

13/091,487 Apr. 21,2011 MICROPROCESSOR THAT FETCHES AND

(CNTR.2449) DECRYPTS ENCRYPTED INSTRUCTIONS IN SAME

TIME AS PLAIN TEXT INSTRUCTIONS
13/091,547 Apr. 21,2011 SWITCH KEY INSTRUCTION IN A
(CNTR.2465) MICROPROCESSOR THAT FETCHES AND

DECRYPTS ENCRYPTED INSTRUCTIONS

13/091,698 Apr. 21,2011 MICROPROCESSOR THAT FACILITATES TASK

(CNTR.2488) SWITCHING BETWEEN ENCRYPTED AND
UNENCRYPTED PROGRAMS

13/091,785 Apr. 21,2011 MICROPROCESSOR THAT FACILITATES TASK
(CNTR.2489) SWITCHING BETWEEN MULTIPLE ENCRYPTED
PROGRAMS HAVING DIFFERENT ASSOCIATED

DECRYPTION KEY VALUES
13/091,828 Apr. 21,2011 BRANCH TARGET ADDRESS CACHE FOR

(CNTR.2523) PREDICTING INSTRUCTION DECRYPTION KEYS IN
A MICROPROCESSOR THAT FETCHES AND

DECRYPTS ENCRYPTED INSTRUCTIONS

FIELD OF THE INVENTION 40

The present invention relates in general to the field of
microprocessors, and particularly to increasing the security

of programs executing thereon.
45

BACKGROUND OF THE INVENTION

It is well known that many software programs are vul-
nerable to attacks that breach the security of a computer
system. For example, an attacker may attempt to exploit a 50
buffer overflow vulnerability of a running program to inject
code and cause a transfer of control to the injected code, in
which case the injected code has the privileges of the
attacked program. One attempt to preventing attacks on
software programs is broadly referred to as instruction set 55
randomization. Broadly speaking, instruction set random-
ization involves encrypting the program in some fashion and
then decrypting it within the processor after the processor
fetches the program from memory. In this way, the attacker’s
task of injecting instructions is made more difficult because 60
the injected instructions must be properly encrypted (e.g.,
using the same encryption key and algorithm as the program
under attack) in order to correctly execute. See for example,
Counter Code-Injection Attacks with Instruction-Set Ran-
domization, by Gaurav S. Kc, Angelos D. Keromytis, and 65
Vassilis Prevelakis, CCS *03, Oct. 27-30, 2003, Washington,
D.C., USA, ACM 1-58113-738-9/03/0010, which describes

ated with each of the chunks. The encryption key data
associated with each of the chunks is distinct. The method
also includes replacing each of the conventional branch
instructions that specifies a target address that is within a
different chunk than the chunk in which the conventional
branch instruction resides with a branch and switch key
instruction. The method also includes encrypting the pro-
gram based on the chunk information.

In another aspect, the present invention provides a method
for encrypting a program for subsequent execution by a
microprocessor configured to decrypt and execute the
encrypted program. The method includes receiving an object
file specifying an unencrypted program that includes con-
ventional branch instructions whose target address may only
be determined at the time in which the microprocessor runs
the program. The method also includes analyzing the pro-
gram to obtain chunk information. The chunk information
divides the program into a sequence of chunks. Each of the
chunks comprises a sequence of instructions, wherein the
chunk information further comprises encryption key data
associated with each of the chunks. The encryption key data
associated with each of the chunks is distinct. The method
also includes replacing each of the conventional branch
instructions with a branch and switch key instruction. The
method also includes encrypting the program based on the
chunk information.

In yet another aspect, the present invention provides a
computer program product encoded in at least one non-

US 9,461,818 B2

3

transitory computer usable medium for use with a comput-
ing device, the computer program product comprising com-
puter usable program code embodied in the medium for
specifying a method for encrypting a program for subse-
quent execution by a microprocessor configured to decrypt
and execute the encrypted program. The computer usable
program code includes first program code for receiving an
object file specifying an unencrypted program that includes
conventional branch instructions whose target address may
be determined prior to the time in which the microprocessor
runs the program. The computer usable program code also
includes second program code for analyzing the program to
obtain chunk information, wherein the chunk information
divides the program into a sequence of chunks, wherein each
of the chunks comprises a sequence of instructions, wherein
the chunk information further comprises encryption key data
associated with each of the chunks, wherein the encryption
key data associated with each of the chunks is distinct. The
computer usable program code also includes third program
code for replacing each of the conventional branch instruc-
tions that specifies a target address that is within a different
chunk than the chunk in which the conventional branch
instruction resides with a branch and switch key instruction.
The computer usable program code also includes fourth
program code for encrypting the program based on the
chunk information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a microprocessor
according to the present invention.

FIG. 2 is a block diagram illustrating in more detail the
fetch unit of FIG. 1.

FIG. 3 is a flowchart illustrating operation of the fetch unit
of FIG. 2 according to the present invention.

FIG. 4 is a block diagram illustrating the fields of the
EFLAGS register of FIG. 1 according to the present inven-
tion.

FIG. 5 is a block diagram illustrating the format of a load
key instruction according to the present invention.

FIG. 6 is a block diagram illustrating the format of a
switch key instruction according to the present invention.

FIG. 7 is a flowchart illustrating operation of the micro-
processor of FIG. 1 to perform the switch key instruction of
FIG. 6 according to the present invention.

FIG. 8 is a block diagram illustrating a memory footprint
of an encrypted program that includes switch key instruc-
tions of FIG. 6 according to the present invention.

FIG. 9 is a block diagram illustrating the format of a
branch and switch key instruction according to the present
invention.

FIG. 10 is a flowchart illustrating operation of the micro-
processor of FIG. 1 to perform the branch and switch key
instruction of FIG. 9 according to the present invention.

FIG. 11 is a flowchart illustrating operation of a post-
processor, which is a software utility that may be employed
to post-process a program and encrypt it for execution by the
microprocessor of FIG. 1 according to the present invention.

FIG. 12 is a block diagram illustrating the format of a
branch and switch key instruction according to an alternate
embodiment of the present invention.

FIG. 13 is a block diagram illustrating a chunk address
range table according to the present invention.

FIG. 14 is a flowchart illustrating operation of the micro-
processor of FIG. 1 to perform the branch and switch key
instruction of FIG. 12 according to the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 15 is a block diagram illustrating the format of a
branch and switch key instruction according to an alternate
embodiment of the present invention.

FIG. 16 is a block diagram illustrating a chunk address
range table according to the present invention.

FIG. 17 is a flowchart illustrating operation of the micro-
processor of FIG. 1 to perform the branch and switch key
instruction of FIG. 15 according to the present invention.

FIG. 18 is a flowchart illustrating operation of a post-
processor that may be employed to post-process a program
and encrypt it for execution by the microprocessor of FIG.
1 according to an alternate embodiment of the present
invention.

FIG. 19 is a flowchart illustrating operation of the micro-
processor of FIG. 1 to accommodate task switching between
an encrypted program and a plain text program according to
the present invention.

FIG. 20 is a flowchart illustrating operation of system
software running on the microprocessor of FIG. 1 according
to the present invention.

FIG. 21 is a block diagram illustrating the fields of the
EFLAGS register of FIG. 1 according to an alternate
embodiment of the present invention.

FIG. 22 is a flowchart illustrating operation of the micro-
processor of FIG. 1 having an EFLLAGS register according
to FIG. 21 to accommodate task switching between multiple
encrypted programs according to the present invention.

FIG. 23 is a flowchart illustrating operation of the micro-
processor of FIG. 1 having an EFLLAGS register according
to FIG. 21 to accommodate task switching between multiple
encrypted programs according to the present invention.

FIG. 24 is a block diagram illustrating a single register of
the key register file of FIG. 1 according to an alternate
embodiment of the present invention.

FIG. 25 is a flowchart illustrating operation of the micro-
processor of FIG. 1 having an EFLLAGS register according
to FIG. 21 and a key register file according to FIG. 24 to
accommodate task switching between multiple encrypted
programs according to an alternate embodiment of the
present invention.

FIG. 26 is a flowchart illustrating operation of the micro-
processor of FIG. 1 having an EFLLAGS register according
to FIG. 21 and a key register file according to FIG. 24 to
accommodate task switching between multiple encrypted
programs according to an alternate embodiment of the
present invention.

FIG. 27 is a block diagram illustrating portions of the
microprocessor of FIG. 1 according to an alternate embodi-
ment of the present invention.

FIG. 28 is a block diagram illustrating in more detail the
BTAC of FIG. 27 according to the present invention.

FIG. 29 is a block diagram illustrating in more detail the
contents of a BTAC entry of FIG. 28 according to the present
invention.

FIG. 30 is a flowchart illustrating operation of the micro-
processor of FIG. 27 including the BTAC of FIG. 28
according to the present invention.

FIG. 31 is a flowchart illustrating operation of the micro-
processor of FIG. 27 including the BTAC of FIG. 28
according to the present invention.

FIG. 32 is a flowchart illustrating operation of the micro-
processor of FIG. 27 to perform a branch and switch key
instruction according to the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Referring now to FIG. 1, a block diagram illustrating a
microprocessor 100 according to the present invention is

US 9,461,818 B2

5

shown. The microprocessor 100 includes a pipeline includ-
ing an instruction cache 102, a fetch unit 104, a decode unit
108, execution units 112, and a retire unit 114. The micro-
processor 100 also includes a microcode unit 132 that
provides microcode instructions to the execution units 112.
The microprocessor 100 also includes general purpose reg-
isters 118 and an EFLAGS register 128 that provide instruc-
tion operands to the execution units 112 and are updated by
the retire unit 114 with instruction execution results. In one
embodiment, the EFLAGS register 128 is a conventional
x86 EFLAGS register modified as described in more detail
below.

The fetch unit 104 fetches instruction data 106 from the
instruction cache 102. The fetch unit 104 operates in one of
two modes: a decryption mode and a plain text mode. An E
bit 148 in a control register 144 of the fetch unit 104
determines whether the fetch unit 104 is operating in decryp-
tion mode (E bit set) or plain text mode (E bit clear). In plain
text mode, the fetch unit 104 treats the instruction data 106
fetched from the instruction cache 102 as non-encrypted, or
plain text, instruction data and therefore does not decrypt the
instruction data 106; however, in decryption mode, the fetch
unit 104 treats the instruction data 106 fetched from the
instruction cache 102 as encrypted instruction data that must
be decrypted using decryption keys stored in a master key
register file 142 of the fetch unit 104 into plain text instruc-
tion data, as described in more detail below with respect to
FIGS. 2 and 3.

The fetch unit 104 also includes a fetch address generator
164 that generates a fetch address 134 that is used to fetch
the instruction data 106 from the instruction cache 102. The
fetch address 134 is also provided to a key expander 152 of
the fetch unit 104. The key expander 152 selects two keys
172 from the master key register file 142 and performs an
operation on them to generate a decryption key 174, which
is provided as a first input to a mux 154. The second input
to the mux 154 is binary zeroes 176. The E bit 148 controls
the mux 154 such that if the E bit 148 is set, the mux 154
selects the decryption key 174 and selects the zeroes 176 if
the E bit 148 is clear. The output 178 of the mux 154 is
provided as a first input to XOR logic 156 which performs
a Boolean exclusive-OR (XOR) operation of the fetched
instruction data 106 with the mux output 178 to generate the
plain text instruction data 162. The encrypted instruction
data 106 was previously encrypted by XOR-ing its corre-
sponding plain text instruction data with an encryption key
having the same value as the decryption key 174. The fetch
unit 104 will be described in more detail below with respect
to FIGS. 2 and 3.

The plain text instruction data 162 is provided to the
decode unit 108 which decodes the stream of plain text
instruction data 162, breaks it down into distinct x86 instruc-
tions, and issues them to the execution units 112 for execu-
tion. In one embodiment, the decode unit 108 includes
buffers, or queues, for buffering the stream of plain text
instruction data 162 prior to and during decoding. In one
embodiment, the decode unit 108 includes an instruction
translator that translates the x86 instructions into microin-
structions, or micro-ops, that are executed by the execution
units 112. As the decode unit 108 emits instructions, it also
emits a bit for each instruction that proceeds down the
pipeline with the instruction to indicate whether or not the
instruction was an encrypted instruction. The bit enables the
execution units 112 and retire unit 114 to make decisions and
take actions based on whether the instruction was an
encrypted instruction or a plain text instruction when it was
fetched from the instruction cache 102. In one embodiment,

25

40

45

55

6

plain text instructions are not allowed to perform certain
actions related to instruction decryption mode operation.

In one embodiment, the microprocessor 100 is an x86
architecture processor; however, other processor architec-
tures may be employed. A processor is an x86 architecture
processor if it can correctly execute a majority of the
application programs that are designed to be executed on an
x86 processor. An application program is correctly executed
if its expected results are obtained. In particular, the micro-
processor 100 executes instructions of the x86 instruction set
and includes the x86 user-visible register set.

In one embodiment, the microprocessor 100 is configured
to provide a comprehensive security architecture referred to
as secure execution mode (SEM) in which programs may
execute. According to one embodiment, execution of SEM
programs can be invoked by several processor events and
cannot be blocked by normal (non-SEM) execution.
Examples of functions performed by programs executing in
SEM include critical security tasks such as verifying cer-
tificates and encrypting data, monitoring system software
activities, verifying the integrity of system software, track-
ing resource usage, controlling installation of new software,
and so forth. Embodiments of the SEM are described in
detail in U.S. patent application Ser. No. 12/263,131, filed
Oct. 31, 2008 (CNTR.2322) (U.S. Publication No. 2009-
0292893, Nov. 26, 2009), which claims priority to U.S.
Provisional Application No. 61/055,980, filed, May 24,
2008, each of which is hereby incorporated by reference
herein in its entirety. In one embodiment, a secure non-
volatile memory (not shown) for SEM data, such as a flash
memory, which may be used to store decryption keys, is
coupled to the microprocessor 100 via a private serial bus,
and all the data therein is AES-encrypted and signature-
verified. In one embodiment, the microprocessor 100
includes a small amount of non-volatile write-once memory
(not shown) that may be used to store decryption keys,
which according to one embodiment is a fuse-embodied
non-volatile storage described in U.S. Pat. No. 7,663,957,
which is hereby incorporated by reference in its entirety. An
advantage of the instruction decryption feature described
herein is that it provides an extension to the SEM that
enables secure programs to be stored in memory outside the
microprocessor 100 rather than requiring the secure pro-
grams to be stored entirely within the microprocessor 100.
Thus, the secure programs may be able to take advantage of
the full size and function of the memory hierarchy. In one
embodiment, some or all of the architectural exceptions/
interrupts (e.g., page faults, debug breakpoints, etc.) are
disabled when running in SEM mode. In one embodiment,
some or all of the architectural exceptions/interrupts are
disabled when running in decryption mode (i.e., when the E
bit 148 is set).

The microprocessor 100 also includes a key register file
124. The key register file 124 comprises a plurality of
registers from which keys may be loaded into the master key
registers 142 of the fetch unit 104 via a switch key instruc-
tion (discussed below) for use in decrypting fetched
encrypted instruction data 106.

The microprocessor 100 also includes a secure memory
area (SMA) 122. The secure memory area 122 is used to
store decryption keys waiting to be loaded into the key
register file 124 by the load key instruction 500 of FIG. 5.
In one embodiment, the secure memory area 122 is only
accessible by SEM programs. That is, the secure memory
area 122 is not accessible by programs executing in normal
(i.e., non-SEM) execution mode. Furthermore, the secure
memory area 122 is not accessible via the processor bus and

US 9,461,818 B2

7

is not part of the cache memory hierarchy of the micropro-
cessor 100; hence, for example, a cache flush operation does
not cause the contents of the secure memory area 122 to be
written to memory. Special instructions exist within the
instruction set architecture of the microprocessor 100 to read
and write the secure memory area 122. According to one
embodiment, the secure memory area 122 comprises a
private RAM as described in more detail in U.S. patent
application Ser. No. 12/034,503 (CNTR.2349), filed Feb. 20,
2008 (U.S. Publication No. 2008-0256336, Oct. 16, 2008),
which is hereby incorporated by reference in its entirety.

Initially, the operating system or other privileged program
loads an initial set of keys into the secure memory area 122,
key register file 124, and master key register file 142. The
microprocessor 100 will initially use the initial set of keys to
decrypt an encrypted program. Additionally, the encrypted
program itself may subsequently write new keys into the
secure memory area 122, load the keys from the secure
memory area 122 into the key register file 124 (via the load
key instruction), and load the keys from the key register file
124 into the master key registers 142 (via the switch key
instruction). Advantageously, the switch key instruction
enables on-the-fly switching of the set of decryption keys
while the encrypted program is running, as described below.
The new keys may be composed of immediate data within
the encrypted program instructions themselves. In one
embodiment, a field in the header of the program file
indicates whether or not the instructions of the program are
encrypted.

Several advantages may be observed from FIG. 1. First,
the plain text instruction data decrypted from the encrypted
instruction data 106 is never observable outside the micro-
processor 100.

Second, the fetch unit 104 embodiment requires the same
time to fetch encrypted instruction data as it does to fetch
plain text instruction data. This is critical to security. Oth-
erwise, the time difference might create a vulnerability that
an attacker might exploit to break the encryption.

Third, the instruction decryption feature adds no addi-
tional clock cycles to the fetch unit 104 over a conventional
design. As discussed below, the key expander 152 increases
the effective length of the decryption key used to decrypt an
encrypted program, and it advantageously does so without
causing the time required to fetch encrypted program data to
be longer than the time required to fetch plain text program
data. In particular, because the key expander 152 operates
within the time required by the instruction cache 102 to
lookup the fetch address 134 and provide the instruction data
106, the key expander 152 adds no time to the ordinary fetch
process. Furthermore, because the mux 154 and key
expander 152 together operate within the time required by
the instruction cache 102 to lookup the fetch address 134 and
provide the instruction data 106, they add no additional time
to the ordinary fetch process. The XOR logic 156 is the only
logic added to the ordinary fetch path, and advantageously,
the propagation delay introduced by the XOR operation 156
is sufficiently small as to avoid requiring an increase in clock
cycle time. Thus, the addition of the instruction decryption
feature adds no additional clock cycles to the fetch unit 104.
Furthermore, this is in contrast to a conceivable implemen-
tation that incorporates a complex decryption mechanism,
such as S-boxes, to decrypt the instruction data 106, which
would require an increase in cycle time and/or an increase in
the number of clock cycles required to fetch and decode the
instruction data 106.

Referring now to FIG. 2, a block diagram illustrating in
more detail the fetch unit 104 of FIG. 1 is shown. In

10

15

20

25

30

35

40

45

50

55

60

65

8

particular, the details of the key expander 152 of FIG. 1 are
shown. The advantages of using an XOR function to decrypt
the encrypted instruction data 106 are discussed above.
However, the fast and small XOR function has the disad-
vantage that it is inherently a weak encryption method if the
encryption/decryption key is re-used. However, if the effec-
tive length of the key is equal to the length of the program
being encrypted/decrypted, the XOR encryption is a very
strong form of encryption. Advantageously, the micropro-
cessor 100 includes features to increase the effective length
of the decryption key in order to reduce the need to re-use
the key. First, the values stored in the master key register file
142 are of moderately large size: in one embodiment, they
are the size of a fetch quantum, or block, of the instruction
data 106 from the instruction cache 102, which is 128 bits
(16 bytes). Second, the key expander 152 operates to
increase the effective length of the decryption key, such as
to 2,048 bytes according to one embodiment, as described in
more detail below. Third, the encrypted program may
change the values in the master key registers 142 on-the-fly
while it is executing using a switch key instruction (and
variants thereof) described below.

In the embodiment of FIG. 2, there are five master key
registers 142, indexed as O through 4. However, other
embodiments are contemplated in which a smaller or larger
number of master key registers 142 are employed to increase
the effective decryption key length. For example, an
embodiment is contemplated in which there are twelve
master key registers 142. The key expander 152 includes a
first mux A 212 and a second mux B 214 that receive the
keys from master key registers 142. A portion of the fetch
address 134 controls the muxes 212/214. In the embodiment
of FIG. 2, mux B 214 is a 3:1 mux and mux A 212 is a 4:1
mux. Table 1 describes the master key registers 142 index
selected by the muxes 212/214 based on their select input
values, and Table 2 shows the generation of the select input
values and consequent master key registers 142 combina-
tions as a function of fetch address 134 bits [10:8].

TABLE 1
MuxB index of selected MuxA index of selected
select master key register select master key register
00 0 00 1
01 1 01 2
10 2 10 3
11 4
TABLE 2
Fetch Address MuxB-MuxA MuxB MuxA
[10:8] Combination select select
000 0-1 00 00
001 0-2 00 01
010 0-3 00 10
011 0-4 00 11
100 1-2 01 01
101 1-3 01 10
110 1-4 01 11
111 2-3 10 10

The output 236 of mux B 214 is provided to an adder/
subtractor 218. The output 234 of mux A 212 is provided to
a rotater 216. The rotater 216 receives bits [7:4] of the fetch
address 134, whose value controls the number of bytes the
rotater 216 rotates the mux output 234. In one embodiment,
the bits [7:4] of the fetch address 134 are incremented prior

US 9,461,818 B2

9

to being used by the rotater 216 to control the number of
bytes to rotate, as shown in Table 3 below. The output 238
of the rotater 216 is provided to the adder/subtractor 218.
The adder/subtractor 218 receives bit [7] of the fetch address
134. If bit [7] is clear, the adder/subtractor 218 subtracts the
output 238 of the rotater 216 from the output 236 of mux B
214; otherwise, if bit [7] is set, the adder/subtractor 218 adds
the output 238 of the rotater 216 to the output 236 of mux
B 214. The output of the adder/subtractor 218 is the decryp-
tion key 174 of FIG. 1 that is provided to mux 154. This
operation is described in the flowchart of FIG. 3.

Referring now to FIG. 3, a flowchart illustrating operation
of the fetch unit 104 of FIG. 2 according to the present
invention is shown. Flow begins at block 302.

At block 302, the fetch unit 104 applies the fetch address
134 to the instruction cache 102 to begin fetching a 16-byte
block of instruction data 106. The instruction data 106 may
be encrypted or it may be plain text, depending upon
whether the instruction data 106 is part of an encrypted or
plain text program, which is indicated by the E bit 148. Flow
proceeds to block 304.

At block 304, mux A 212 selects a first key 234 and mux
B 214 selects a second key 236 from among the keys 172 of
the master key register file 142 based on upper fetch address
134 bits. In one embodiment, the fetch address 134 bits are
employed by the muxes 212/214 to select only unique
combinations of the key 234/236 pairs. In the embodiment
of FIG. 2 in which five master key registers 142 are
provided, there exists ten possible unique combinations of
the master key registers 142, and to simply the hardware
design, eight of the combinations are employed. As dis-
cussed in more detail below, this advantageously yields an
effective key of 2,048 bytes. However, other embodiments
are contemplated with a different number of master key
registers 142. For example, an embodiment is contemplated
in which twelve master key registers 142 are provided, for
which there exists 66 possible unique combinations of the
master key registers 142, such that if 64 of the combinations
are employed, this yields an effective key of 16,384 bytes.
Flow proceeds to block 306.

At block 306, the rotater 216 rotates the first key 234 a
number of bytes based on the value of fetch address 134 bits
[7:4] to generate a rotated first key 238. For example, if the
value of fetch address 134 bits [7:4] is nine, then the rotater
216 rotates the first key 234 right nine bytes. Flow proceeds
to block 308.

At block 308, the adder/subtractor 218 adds/subtracts the
rotated first key 238 to/from the second key 236 to produce
the decryption key 174 of FIG. 1. In one embodiment, if bit
[7] of the fetch address 134 is one, then the adder/subtractor
218 adds the rotated first key 238 to the second key 236;
whereas, if bit [7] of the fetch address 134 is zero, then the
adder/subtractor 218 subtracts the rotated first key 238 from
the second key 236. Flow proceeds to decision block 312.

At decision block 312, the mux 154 determines whether
the fetched block of instruction data 106 is from an
encrypted or plain text program based on its control input,
which is the E bit 148 from the control register 144. If the
instruction data 106 is encrypted, flow proceeds to block
314; otherwise, flow proceeds to block 316.

At block 314, the mux 154 selects the decryption key 174
and the XOR gate 156 performs a Boolean XOR operation
on the encrypted instruction data 106 with the decryption
key 174 to generate the plain text instruction data 162 of
FIG. 1. Flow ends at block 314.

40

45

10
At block 316, the mux 154 selects the sixteen bytes of
zeroes 176 and the XOR gate 156 performs a Boolean XOR
operation on the instruction data 106 (which is plain text)
with the zeroes to generate the same plain text instruction
data 162. Flow ends at block 316.

As may be observed from FIGS. 2 and 3, the derived
decryption key 174 that is XORed with a given block of
instruction data 106 is a function only of the selected master
key pair 234/236 and the fetch address 134. This is in
contrast to a classical decryption mechanism that is a
function of a previous key value by continually modifying
the key and feeding the new key back into the next cycle.
The fact that the derived decryption key 174 is a function of
only the master key pair and the fetch address 134 is
advantageous for at least two reasons. First, as mentioned
above, it enables both encrypted and plain text instruction
data 106 to be fetched in the same amount of time and does
not increase the cycle time of the microprocessor 100.
Second, it does not increase the time required to fetch
instruction data 106 in the presence of a branch instruction
in the program. In one embodiment, a branch predictor
receives the fetch address 134 and predicts the presence,
direction, and target address of a branch instruction within
the block of instruction data 106 at the fetch address 134. In
the embodiment of FIG. 2, the fact that the derived decryp-
tion key 174 is a function only of the master key pair
234/236 and the fetch address 134 enables it to generate the
appropriate decryption key 174 for the predicted target
address during the same clock that the block of instruction
data 106 at the target address arrives at the XOR gate 156.
This avoids the requirement that would be generated by a
classical decryption key calculation mechanism to perform
multiple “rewind” steps to calculate the decryption key for
the target address, thereby incurring additional delay in the
case of encrypted instruction data.

As may also be observed from FIGS. 2 and 3, the rotater
216 and adder/subtractor 218 of the key expander 152 work
together to effectively expand the decryption key length
beyond the length of the master keys 142. In other words, the
master keys 142 are collectively 32 bytes (2*¥16 bytes);
however, from the perspective of an attacker attempting to
determine the decryption keys 174, the rotater 216 and
adder/subtractor 218 effectively expand the 32 bytes of
master keys 142 into a 256-byte expanded key sequence.
More specifically, byte n of the effectively expanded key
sequence is:

ko, xky

e

where k,_is byte n of the first master key 234 and %1 18
byte n+x of the second master key 236. As described above,
the first eight sets of 16-byte decryption keys 174 generated
by the key expander 152 are formed by a subtraction, and the
second eight sets are formed by an addition. Specifically, the
pattern of bytes of each selected master key pair 234/236
used to generate the decryption key 174 bytes for each
corresponding byte of sixteen sequential 16-byte blocks of
instruction data is shown below in Table 3. For example, the
notation “15-00” in the first line of Table 3 indicates that
byte 0 of the second master key 236 is subtracted via an
eight-bit arithmetic operation from byte 15 of the first master
key 234 to generate the effective decryption key 174 byte to
be XORed with byte 15 of a 16-byte block of instruction
data 106.

US 9,461,818 B2

11 12
TABLE 3
15-00 14-15 13-14 12-13 11-12 10-11 09-10 0809 07-08 06-07 05-06 04-05 03-04 02-03 01-02 00-01
15-01 14-00 13-15 12-14 11-13 10-12 09-11 08-10 07-09 06-08 05-07 04-06 03-05 02-04 01-03 00-02
15-02 14-01 13-00 12-15 11-14 10-13 09-12 08-11 07-10 06-09 05-08 04-07 03-06 02-05 01-04 00-03
15-03 14-02 13-01 12-00 11-15 10-14 09-13 08-12 07-11 06-10 05-09 04-08 03-07 02-06 01-05 00-04
15-04 14-03 13-02 12-01 11-00 10-15 09-14 08-13 07-12 06-11 05-10 04-09 03-08 02-07 01-06 00-05
15-05 14-04 13-03 12-02 11-01 10-00 09-15 08-14 07-13 06-12 05-11 04-10 03-09 02-08 01-07 00-06
15-06 14-05 13-04 12-03 11-02 10-01 09-00 08-15 07-14 06-13 05-12 04-11 03-10 02-09 01-08 00-07
15-07 14-06 13-05 12-04 11-03 10-02 09-01 0800 07-15 06-14 05-13 04-12 03-11 02-10 01-09 00-08
15408 14407 13406 12405 11404 10403 09+02 08+01 07400 06+15 05+14 04413 03+12 02+11 O01+10 00+09
15409 14408 13407 12406 11405 10404 09+03 08+02 07401 06400 05+15 04+14 03+13 02+12 O1+11 00+10
15410 14409 13408 12407 11406 10405 09+04 08+03 07402 06401 05400 04415 03+14 02+13 01+12 00+11
15411 14410 13409 12408 11407 10406 09405 08404 07+03 06+02 05401 04+00 03+15 02+14 01413 00+12
15412 14411 13410 12409 11408 10407 09+06 08+05 07404 06403 05402 04401 03400 02+15 01+14 00+13
15413 14412 13411 12410 11409 10408 09+07 08+06 07405 06404 05403 04402 03401 02400 OI+15 00+14
15414 14413 13412 12411 11410 10409 09+08 08+07 07406 06405 05404 04403 03402 02401 01400 O00+15
15415 14414 13413 12412 11411 10410 09+09 08+08 07407 06406 05405 04404 03403 02402 01401 00+00

Given appropriate master key 142 values, the expanded
keys generated by the key expander 152 may exhibit good
statistical properties that significantly hinder the common
attack on XOR-based encryption, which involves shifting an
encrypted block of text by the key length and XORing the
encrypted blocks together, as discussed below in more
detail. The net effect of the key expander 152 on a given
selected master key pair 234/236 is that the span between
two instruction data 106 bytes of the program that are
encrypted with the same exact key can be up to 256 bytes in
the embodiment shown. Other embodiments are contem-
plated having different instruction data 106 block sizes and
master key 142 lengths that yield different values for the
maximum span between two instruction data 106 bytes
encrypted with the same key.

The plurality of master key registers 142 and muxes
212/214 of the key expander 152 functioning to select the
master key pair 234/236 also operate to extend the effective
key length. As discussed above, in the embodiment of FIG.
2 in which five master key registers 142 are provided, there
exists ten possible unique combinations of the master key
registers 142, and the muxes 212/214 operate to select eight
of the ten possible combinations. The 256-byte effective key
length per key pair 234/236 of Table 3 in conjunction with
the eight unique combinations of key pairs 234/236 yields an
effective key length 0of 2,048 bytes. That is, the span between
two instruction data 106 bytes of the program that are
encrypted with the same exact key can be up to 2,048 bytes
in the embodiment shown.

The relationship between the effective key length L, the
number of keys K, and the width of each of the keys W (in
bytes) is expressed by the following formula:

W2xK!
T 2x(K=2)!

Using the example above, K=5 and W=16 (128 bits=16
bytes). Applied to formula, this yields an effective key length
of 2560 bytes.

W2xK! 16% 5! 256 %120

TR K- 2«(5-2! 246 =12560

Eff

Because in the above example, only 8 of the 10 possible key
pairs are used, the effective length of the used portion of the
keys equals 8%10/2560=2048 bytes.

20

25

30

35

40

45

50

55

60

65

To further appreciate the advantages afforded by the key
expander 152, a brief explanation of a common method of
attack on XOR-based encryption schemes is given. If the
key length employed by an XOR encryption algorithm is
shorter than the length of the program instruction data to be
encrypted/decrypted, the key must be reused for potentially
many bytes, depending upon the length of the program. This
vulnerability leads to a classic way to break an XOR
instruction encryption scheme. First, the attacker attempts to
determine the length of the repeating key, which is n+1 in the
conventional example of lines (1) through (3) below. Sec-
ond, the attacker assumes each key-length block of instruc-
tion data is encrypted with the same key. To illustrate,
consider two key-length blocks of data encrypted according
to a conventional XOR encryption algorithm:

b,

o A s <o

®

s buy ~ky, boy ko

by Ay oo b1~y boy Ak, 2)

where “n,, is byte n of the first key-length block of data being
encrypted, ®n, is byte n of the second key-length block of
data being encrypted, and “n is byte n of the key. Third, the
attacker XORs the two blocks together, in which case the
key portions cancel each other leaving:

by

Abpgs s s big n b1y bog Abo, - @

Finally, since the resultant bytes are a function of only two
plain-text bytes, the attacker employs statistical analysis of
plain-text frequencies to try to derive the plain-text byte
values.

In contrast, the pattern of encrypted instruction data 106
bytes according to the embodiment of FIGS. 2 and 3 are
described below in lines (4) and (5):

B A (ki ikoy), e by Ak, 2ka), by A (ko +k1y) “)

[2y x =

By A (feny ikly), e by Ak, ik3y), bo, ~ (koy ikzy), ®)

where “n,, denotes byte n of a first 16-byte block of instruc-
tion data being encrypted, ®n, denotes byte n of a next
16-byte block of instruction data being encrypted, “n,
denotes byte n of a master key x, and kny denotes byte n of
a master key y. As discussed above, the master keys x and

US 9,461,818 B2

13

y are different keys. Assuming the eight different combina-
tions of the master key pair 234/236 afforded by an embodi-
ment with five master key registers 142, each byte within a
2,048-byte sequence is XORed with a different combination
of two independent master key 142 bytes. Thus, when
encrypted data is shifted in any fashion within the 256-byte
block and XORed together there remains a complex com-
ponent of the two master keys left in the result byte such
that, unlike the result in line (3), the result is a function of
more than just plain text bytes. For example, if the attacker
chooses to align and XOR 16-byte blocks within the same
256-byte block such that the same key O bytes are used in
each term, the result for byte 0 is shown here in line (6)
having a complex component of the two master keys left in
the result byte:

bog ~ ko, £k (6)

0)AbolA(kO tk)’

1y e =iy

where n is different than 1.

Still further, if the attacker chooses to align and XOR
16-byte blocks from different 256-byte blocks, the result for
byte 0 is shown here in line (7):

bog A(kox ikly)Abol ~ (ko, £ kn,), M

where at least one of the master keys u and v is different than
both master keys x and y. Simulation of XORing the
effective key bytes generated from random master key
values has displayed a relatively smooth distribution of the
resulting (“0,*1 y)f)(kOfknv) values.

Of course, if the attacker chooses to align and XOR
16-byte blocks from different 2,048-byte blocks, the attacker
may achieve a similar result as shown in line (3). However,
the following is noted. First, some programs, such as secu-
rity-related programs, may be shorter than 2,048 bytes.
Second, the statistical correlation between instruction bytes
that are 2,048 bytes apart is likely very small, thus increasing
the difficulty of successfully breaking the scheme. Third, as
mentioned above, embodiments are contemplated in which
the number of the master key registers 142 may be increased
to further extend the effective length of the decryption key,
such as to 16,384 by providing twelve master key registers
142, for example, or longer. Fourth, the load key instruction
500 and switch key instruction 600 discussed below provide
a means for the programmer to load new values into the
master key register file 142 to effectively extend the length
of'the key greater than 2,048 and, if necessary, to extend the
key length to the entire length of program.

Referring now to FIG. 4, a block diagram illustrating the
fields of the EFLAGS register 128 of FIG. 1 according to the
present invention is shown. According to the embodiment of
FIG. 4, the EFLAGS register 128 includes the standard x86
EFLAGS register bits 408; however, the embodiment of
FIG. 4 uses for new purposes described herein a bit that is
conventionally RESERVED by the x86 architecture. In
particular, the EFLLAGS register 128 includes an E bit field
402. The E bit 402 is used to restore the control register 144
E bit 148 value in order to facilitate switching between
encrypted and plain text programs and/or between different
encrypted programs, as described in more detail below. The
E bit 402 indicates whether the currently executing program
is encrypted. The E bit 402 is set if the currently executing
program is encrypted; otherwise, it is clear. Advantageously,

15

20

25

35

40

45

14

the EFLAGS register 128 gets saved when an interrupting
event occurs that switches control to another program, such
as an interrupt, exception (such as a page fault), or task
switch. Conversely, the EFLAGS register 128 gets restored
when control returns to the program that was interrupted by
the interrupting event. The microprocessor 100 is configured
such that, advantageously, when the EFLAGS register 128 is
restored, the microprocessor 100 also updates the value of
the control register 144 E bit 148 with the value of the
EFLAGS register 128 E bit 402, as described in more detail
below. Therefore, if an encrypted program was executing
when the interrupting event occurred, i.e., the fetch unit 104
was in decryption mode, when control is returned to the
encrypted program, the fetch unit 104 is restored to decryp-
tion mode by the setting of the E bit 148 via the restored E
bit 402. In one embodiment, the E bit 148 and the E bit 402
are the same physical hardware bit such that saving the value
of the EFLAGS register 128 E bit 402 saves the E bit 148
and restoring a value the EFLAGS register 128 E bit 402
restores the E bit 148.

Referring now to FIG. 5, a block diagram illustrating the
format of a load key instruction 500 according to the present
invention is shown. The load key instruction 500 includes an
opcode 502 field that uniquely identifies the load key
instruction 500 within the instruction set of the micropro-
cessor 100. In one embodiment, the opcode field 502 value
is OFA6/4 (in x86 notation). The load key instruction 500
includes two operands: a key register file destination address
504 and an SMA source address 506. The SMA address 506
is an address of a location within the secure memory area
122 in which a 16-byte master key is stored. The key register
file address 504 specifies a register within the key register
file 124 into which the 16-byte master key from the secure
memory area 122 is to be loaded. In one embodiment, if a
program attempts to execute a load key instruction 500 when
the microprocessor 100 is not in secure execution mode, an
invalid instruction exception is taken, and if the SMA
address 506 value is outside the valid secure memory area
122, a general protection exception is taken. In one embodi-
ment, if a program attempts to execute a load key instruction
500 when the microprocessor 100 is not in the highest
privilege level (e.g., x86 ring 0), an invalid instruction
exception is taken. In some instances, the constituent parts
of'the 16-byte master keys may be included in an immediate
data field of the encrypted instructions. The immediate data
may be moved piece by piece into the secure memory area
122 to construct the 16-byte keys.

Referring now to FIG. 6, a block diagram illustrating the
format of a switch key instruction 600 according to the
present invention is shown. The switch key instruction 600
includes an opcode 602 field that uniquely identifies the
switch key instruction 600 within the instruction set of the
microprocessor 100. The switch key instruction 600 also
includes a key register file index field 604 that specifies the
first of a sequence of registers within the key register file 124
from which the keys will be loaded into the master key
registers 142. In one embodiment, if a program attempts to
execute a switch key instruction 600 when the micropro-
cessor 100 is not in secure execution mode, an invalid
instruction exception is taken. In one embodiment, if a
program attempts to execute a switch key instruction 600
when the microprocessor 100 is not in the highest privilege
level (e.g., x86 ring 0), an invalid instruction exception is
taken. In one embodiment, the switch key instruction 600 is
atomic, i.e., non-interruptible, as are the other instructions

US 9,461,818 B2

15

described herein that loads the master key registers 142,
such as the branch and switch key instructions described
below.

Referring now to FIG. 7, a flowchart illustrating operation
of the microprocessor 100 of FIG. 1 to perform the switch
key instruction 600 of FIG. 6 according to the present
invention is shown. Flow begins at block 702.

At block 702, the decode unit 108 decodes a switch key
instruction 600 and traps to the microcode routine in the
microcode unit 132 that implements the switch key instruc-
tion 600. Flow proceeds to block 704.

At block 704, the microcode loads the master key regis-
ters 142 from the key register file 124 based on the key
register file index field 604. Preferably, the microcode loads
n keys from n adjacent registers of the key register file 124
beginning at the key register specified in the key register file
index field 604 into the master key registers 142, where n is
the number of master key registers 142. In one embodiment,
n may be specified within an additional field of the switch
key instruction 600 to be less than the number of master key
registers 142. Flow proceeds to block 706.

At block 706, the microcode causes the microprocessor
100 to branch to the next sequential x86 instruction, i.e., to
the instruction after the switch key instruction 600, which
causes all x86 instructions in the microprocessor 100 to be
flushed that are newer than the switch key instruction 600
and which causes all micro-ops in the microprocessor 100 to
be flushed that are newer than the micro-op that branches to
the next sequential x86 instruction. This includes all instruc-
tion bytes 106 fetched from the instruction cache 102 that
may be waiting in buffers of the fetch unit 104 to be
decrypted and the decode unit 108 to be decoded. Flow
proceeds to block 708.

At block 708, as a result of the branch to the next
sequential instruction at block 706, the fetch unit 104 begins
fetching and decrypting instruction data 106 from the
instruction cache 102 using the new set of key values loaded
into the master key registers 142 at block 704. Flow ends at
block 708.

As may be observed from FIG. 7, the switch key instruc-
tion 600 advantageously enables a currently executing
encrypted program to change the values in the master key
registers 142 being used to decrypt the encrypted program
when fetched from the instruction cache 102. This on-the-fly
changing of the master key register 142 values may be
employed to increase the effective key length used to encrypt
the program beyond the length inherently provided by the
fetch unit 104 (2,048 bytes according to the embodiment of
FIG. 2, for example), as illustrated in FIG. 8, thereby greatly
increasing the difficulty of an attacker to breach the security
of the computer system that incorporates the microprocessor
100 if FIG. 1.

Referring now to FIG. 8, a block diagram illustrating a
memory footprint 800 of an encrypted program that includes
switch key instructions 600 of FIG. 6 according to the
present invention is shown. The encrypted program memory
footprint 800 of FIG. 8 comprises sequential chunks of bytes
of instruction data. A chunk is a sequence of instruction data
bytes that are to be decrypted (because they have been
previously encrypted) with the same set of master key
register 142 values. Thus, each switch key instruction 600
defines the boundary between two chunks. That is, the upper
and lower boundaries of the chunks are defined by the
location of a switch key instruction 600 (or, in the case of the
first chunk of the program, the upper boundary is the
beginning of the program; and, in the case of the last chunk
of the program, the lower boundary is the end of the

10

15

20

25

30

35

40

45

50

55

60

65

16

program). Thus, each chunk of instruction data bytes will be
decrypted by the fetch unit 104 with a different set of master
key register 142 values, namely the values loaded into the
master key register file 142 via the switch key instruction
600 of the preceding chunk. A post-processor that encrypts
the program knows the memory address of the location of
each switch key instruction 600 and uses that information,
namely the relevant address bits of the fetch address, along
with the switch key instruction 600 key values to generate
the encryption key bytes to encrypt the program. Some
object file formats allow the programmer to specify the
memory location at which the program is to be loaded, or at
least alignment to a particular size, such as a page boundary,
which provides sufficient address information to encrypt the
program. Additionally, some operating systems load pro-
grams on a page boundary by default.

The switch key instructions 600 may be located anywhere
within the program. However, if each switch key instruction
600 loads unique values into the master key registers 142 to
be used to decrypt the next sequential chunk of instruction
data bytes, and if the switch key instructions 600 (and load
key instructions 400, if necessary) are placed such that the
length of each chunk is less than or equal to the effective key
length afforded by the fetch unit 104 (e.g., 2,048 bytes in the
embodiment of FIG. 2), then the program can be encrypted
with a key whose effective length is as long as the entire
program, thereby providing very strong encryption. Further-
more, even if the switch key instructions 600 are employed
such that the effective key length is shorter than the length
of the encrypted program, i.e., even if the same set of master
key register 142 values are used to encrypt multiple chunks
of the program, varying the size of the chunks (e.g., not
making them all 2,048 bytes) may make the attacker’s task
more difficult because the attacker must first determine
where chunks encrypted with the same set of master key
register 142 values reside and the lengths of each of these
variable-length chunks.

It is noted that the on-the-fly key switch performed by the
switch key instruction 600 requires a relatively large number
of clock cycles to execute primarily due to the pipeline flush.
Additionally, according to one embodiment, the switch key
instruction 600 is implemented primarily in microcode,
which is generally slower than non-microcode-implemented
instructions. Consequently, the impact of switch key instruc-
tions 600 on performance should be taken into account by
the code developer, which may require a balancing of
execution speed and security for a given application.

Referring now to FIG. 9, a block diagram illustrating the
format of a branch and switch key instruction 900 according
to the present invention is shown. First, a description of the
need for the branch and switch key instruction 900 will be
provided.

According to the embodiments described above, each
16-byte block of instruction data of the encrypted program
to be fetched by the fetch unit 104 must be encrypted
(XORed) with the same 16-bytes of decryption key 174
values that will be used by the fetch unit 104 to decrypt
(XOR) the fetched block of instruction data 106. As
described above, the decryption key 174 byte values are
computed by the fetch unit 104 based on two inputs: the
master key byte values stored in the master key registers 142
and certain bits of the fetch address 134 of the 16-byte block
of instruction data 106 being fetched (bits [10:4] in the
example embodiment of FIG. 2). Therefore, a post-proces-
sor that encrypts the programs to be executed by the micro-
processor 100 knows both the master key byte values that
will be stored in the master key registers 142 and the

US 9,461,818 B2

17

address, or more specifically the relevant address bits, at
which the encrypted program will be loaded into memory
and from which the microprocessor 100 will subsequently
fetch the blocks of instruction data of the encrypted pro-
gram. From this information, the post-processor generates
the appropriate decryption key 174 value to use to encrypt
each 16-byte instruction data block of the program.

As discussed above, when a branch instruction is pre-
dicted and/or executed, the fetch unit 104 uses the branch
target address to update the fetch address 134. As long as an
encrypted program never changes the master key values in
the master key registers 142 (via the switch key instruction
600), the presence of branch instructions is handled trans-
parently by the fetch unit 104. That is, the fetch unit 104 uses
the same master key register 142 values to calculate the
decryption key 174 to decrypt the block of instruction data
106 that includes the branch instruction as the block of
instruction data 106 that includes the instructions at the
target address. However, the ability of the program to
change the master key register 142 values (via the switch
key instruction 600) implies the possibility that the fetch unit
104 will use one set of master key register 142 values to
calculate the decryption key 174 to decrypt the block of
instruction data 106 that includes the branch instruction and
a different set of master key register 142 values to calculate
the decryption key 174 to decrypt the block of instruction
data 106 that includes the instructions at the target address.
One way to avoid this problem is to restrict branch target
addresses to be within the same program chunk. Another
solution is provided by the branch and switch key instruction
900 of FIG. 9.

Referring again to FIG. 9, a block diagram illustrating the
format of a branch and switch key instruction 900 according
to the present invention is shown. The branch and switch key
instruction 900 includes an opcode 902 field that uniquely
identifies the branch and switch key instruction 900 within
the instruction set of the microprocessor 100. The branch
and switch key instruction 900 also includes a key register
file index field 904 that specifies the first of a sequence of
registers within the key register file 124 from which the keys
will be loaded into the master key registers 142. The branch
and switch key instruction 900 also includes a branch
information field 906 that includes information typical of
branch instructions, such as information for computing a
target address and a branch condition. In one embodiment,
if a program attempts to execute a branch and switch key
instruction 900 when the microprocessor 100 is not in secure
execution mode, an invalid instruction exception is taken. In
one embodiment, if a program attempts to execute a switch
key instruction 900 when the microprocessor 100 is not in
the highest privilege level (e.g., x86 ring 0), an invalid
instruction exception is taken. In one embodiment, the
branch and switch key instruction 900 is atomic.

Referring now to FIG. 10, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 to perform the
branch and switch key instruction 900 of FIG. 9 according
to the present invention is shown. Flow begins at block
1002.

At block 1002, the decode unit 108 decodes a branch and
switch key instruction 900 and traps to the microcode
routine in the microcode unit 132 that implements the
branch and switch key instruction 900. Flow proceeds to
block 1004.

At block 1006, the microcode resolves the branch direc-
tion (i.e., taken or not taken) and target address. It is noted

25

40

45

50

55

60

65

18

that in the case of unconditional type branch instructions, the
direction is always taken. Flow proceeds to decision block
1008.

At decision block 1008, the microcode determines
whether the direction resolved at block 1006 is taken. If so,
flow proceeds to block 1014; otherwise, flow proceeds to
block 1012.

At block 1012, the microcode does not switch keys or
branch to the target address, since the branch was not taken.
Flow ends at block 1012.

At block 1014, the microcode loads the master key
registers 142 from the key register file 124 based on the key
register file index field 904. Preferably, the microcode loads
n keys from n adjacent registers of the key register file 124
beginning at the key register specified in the key register file
index field 904 into the master key registers 142, where n is
the number of master key registers 142. In one embodiment,
n may be specified within an additional field of the branch
and switch key instruction 900 to be less than the number of
master key registers 142. Flow proceeds to block 1016.

At block 1016, the microcode causes the microprocessor
100 to branch to the target address resolved at block 1006,
which causes all x86 instructions in the microprocessor 100
to be flushed that are newer than the branch and switch key
instruction 900 and which causes all micro-ops in the
microprocessor 100 to be flushed that are newer than the
micro-op that branches to the target address. This includes
all instruction bytes 106 fetched from the instruction cache
102 that may be waiting in buffers of the fetch unit 104 to
be decrypted and the decode unit 108 to be decoded. Flow
proceeds to block 1018.

At block 1018, as a result of the branch to the target
address at block 1016, the fetch unit 104 begins fetching and
decrypting instruction data 106 from the instruction cache
102 using the new set of key values loaded into the master
key registers 142 at block 1014. Flow ends at block 1018.

Referring now to FIG. 11, a flowchart illustrating opera-
tion of a post-processor, which is a software utility that may
be employed to post-process a program and encrypt it for
execution by the microprocessor 100 of FIG. 1 according to
the present invention is shown. Flow begins at block 1102.

At block 1102, the post-processor receives an object file
of a program. According to one embodiment, the object file
includes only branch instructions whose target address may
be determined before run-time of the program, such as a
branch instruction that specifies a fixed target address.
Another type of branch instruction whose target address may
be determined before run-time of the program, for example,
is a relative branch instruction that includes an offset that is
added to the branch instruction’s memory address to calcu-
late the branch target address. In contrast, an example of a
branch instruction whose target address may not be deter-
mined before run-time of the program is branch instruction
whose target address is calculated from operands in registers
or memory that may change during execution of the pro-
gram. Flow proceeds to block 1104.

At block 1104, the post-processor replaces each inter-
chunk branch instruction with a branch and switch key
instruction 900 having an appropriate key register file index
field 904 value based on the chunk into which the target
address of the branch instruction falls. As described above
with respect to FIG. 8, a chunk is a sequence of instruction
data bytes that are to be decrypted with the same set of
master key register 142 values. Thus, an inter-chunk branch
instruction is a branch instruction whose target address is
within a chunk that is different than the chunk which
contains the branch instruction itself. It is noted that intra-

US 9,461,818 B2

19

chunk branches, i.e., branches whose target address is within
the same chunk that contains the branch instruction itself,
need not be replaced. It is noted that the programmer and/or
compiler that creates the source file from which the object
file is generated may explicitly include the branch and
switch key instructions 900 as needed, thereby alleviating
the need for the post-processor to do so. Flow proceeds to
block 1106.

At block 1106, the post-processor encrypts the program.
The post-processor is aware of the memory location and
master key register 142 values associated with each chunk,
which it uses to encrypt the program. Flow ends at block
1106.

Referring now to FIG. 12, a block diagram illustrating the
format of a branch and switch key instruction 1200 accord-
ing to an alternate embodiment of the present invention is
shown. Advantageously, the branch and switch key instruc-
tion 1200 of FIG. 12 accommodates branching when the
target address is not known pre-run-time, as discussed in
more detail below. The branch and switch key instruction
1200 includes an opcode 1202 field that uniquely identifies
the branch and switch key instruction 1200 within the
instruction set of the microprocessor 100. The branch and
switch key instruction 1200 also includes a branch informa-
tion field 906 similar to the same field in the branch and
switch key instruction 900 of FIG. 9. In one embodiment, if
a program attempts to execute a branch and switch key
instruction 1200 when the microprocessor 100 is not in
secure execution mode, an invalid instruction exception is
taken. In one embodiment, if a program attempts to execute
a branch and switch key instruction 1200 when the micro-
processor 100 is not in the highest privilege level (e.g., x86
ring 0), an invalid instruction exception is taken. In one
embodiment, the branch and switch key instruction 1200 is
atomic.

Referring now to FIG. 13, a block diagram illustrating a
chunk address range table 1300 according to the present
invention is shown. The table 1300 includes a plurality of
entries. Each entry is associated with a different chunk of the
encrypted program. Each entry includes an address range
field 1302 and a key register file index field 1304. The
address range field 1302 specifies the memory address range
of the chunk. The key register file index field 1304 specifies
the index into the key register file 124 of the registers storing
the key values that must be loaded by the branch and switch
key instruction 1200 into the master key register 142 to be
used by the fetch unit 104 to decrypt the chunk. As discussed
below with respect to FIG. 18, the table 1300 is loaded into
the microprocessor 100 before a branch and switch key
instruction 1200 is executed that requires access to the table
1300.

Referring now to FIG. 14, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 to perform the
branch and switch key instruction 1200 of FIG. 12 according
to the present invention is shown. Flow begins at block
1402.

At block 1402, the decode unit 108 decodes a branch and
switch key instruction 1200 and traps to the microcode
routine in the microcode unit 132 that implements the
branch and switch key instruction 1200. Flow proceeds to
block 1404.

At block 1406, the microcode resolves the branch direc-
tion (i.e., taken or not taken) and target address. Flow
proceeds to decision block 1408.

10

15

20

25

30

35

40

45

50

55

60

65

20

At decision block 1408, the microcode determines
whether the direction resolved at block 1406 is taken. If so,
flow proceeds to block 1414; otherwise, flow proceeds to
block 1412.

At block 1412, the microcode does not switch keys or
branch to the target address, since the branch was not taken.
Flow ends at block 1412.

At block 1414, the microcode looks up the target address
resolved at block 1406 in the table 1300 of FIG. 13 to obtain
the key register file index field 1304 value of the chunk into
which the target address falls. The microcode then loads the
master key registers 142 from the key register file 124 based
on the key register file index field 1304. Preferably, the
microcode loads n keys into the master key registers 142
from n adjacent registers of the key register file 124 at the
key register file index field 1304 value, where n is the
number of master key registers 142. In one embodiment, n
may be specified within an additional field of the branch and
switch key instruction 1200 to be less than the number of
master key registers 142. Flow proceeds to block 1416.

At block 1416, the microcode causes the microprocessor
100 to branch to the target address resolved at block 1406
and causes all x86 instructions in the microprocessor 100 to
be flushed that are newer than the branch and switch key
instruction 1200 and which causes all micro-ops in the
microprocessor 100 to be flushed that are newer than the
micro-op that branches to the target address. This includes
all instruction bytes 106 fetched from the instruction cache
102 that may be waiting in buffers of the fetch unit 104 to
be decrypted and the decode unit 108 to be decoded. Flow
proceeds to block 1418.

At block 1418, as a result of the branch to the target
address at block 1416, the fetch unit 104 begins fetching and
decrypting instruction data 106 from the instruction cache
102 using the new set of key values loaded into the master
key registers 142 at block 1414. Flow ends at block 1418.

Referring now to FIG. 15, a block diagram illustrating the
format of a branch and switch key instruction 1500 accord-
ing to an alternate embodiment of the present invention is
shown. The branch and switch key instruction 1500 of FIG.
15 and its operation is similar to the branch and switch key
instruction 1200 of FIG. 12; however, rather than loading the
master key registers 142 from the key register file 124, the
branch and switch key instruction 1500 loads the master key
registers 142 from the secure memory area 122, as described
below.

Referring now to FIG. 16, a block diagram illustrating a
chunk address range table 1600 according to the present
invention is shown. The table 1600 of FIG. 16 is similar to
the table 1300 of FIG. 13; however, rather than a key register
index field 1304, the table 1600 includes an SMA address
field 1604. The SM A address field 1604 specifies the address
within the secure memory area 122 of the locations storing
the key values that must be loaded by the branch and switch
key instruction 1500 into the master key register 142 to be
used by the fetch unit 104 to decrypt the chunk. As discussed
below with respect to FIG. 18, the table 1600 is loaded into
the microprocessor 100 before a branch and switch key
instruction 1500 is executed that requires access to the table
1600. In one embodiment, many of the lower bits of the
secure memory area 122 address need not be stored in the
SMA address field 1604, particularly since the number of
locations in the secure memory area 122 storing the set of
keys is large (e.g., 16 bytesx5) and the set may be aligned
on a set-size boundary.

Referring now to FIG. 17, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 to perform the

US 9,461,818 B2

21

branch and switch key instruction 1500 of FIG. 15 according
to the present invention is shown. Flow begins at block
1702. Most of the blocks of the flowchart of FIG. 17 are
similar to the blocks of FIG. 14 and are thus similarly
numbered. However, block 1414 is replaced with block 1714
in which the microcode looks up the target address resolved
at block 1406 in the table 1600 of FIG. 16 to obtain the SMA
address field 1604 value of the chunk into which the target
address falls. The microcode then loads the master key
registers 142 from the secure memory area 122 based on the
SMA address field 1604 value. Preferably, the microcode
loads n keys into the master key registers 142 from n
adjacent 16-byte locations of the secure memory area 122 at
the SMA address field 1604 value, where n is the number of
master key registers 142. In one embodiment, n may be
specified within an additional field of the branch and switch
key instruction 1500 to be less than the number of master
key registers 142.

Referring now to FIG. 18, a flowchart illustrating opera-
tion of a post-processor that may be employed to post-
process a program and encrypt it for execution by the
microprocessor 100 of FIG. 1 according to an alternate
embodiment of the present invention is shown. Flow begins
at block 1802.

At block 1802, the post-processor receives an object file
of a program. According to one embodiment, the object file
includes branch instructions whose target address may be
determined before run-time of the program as well as branch
instructions whose target address may not be determined
before run-time of the program. Flow proceeds to block
1803.

At block 1803, the post-processor creates a chunk address
range table 1300 of FIG. 13 or 1600 of FIG. 16 for inclusion
in the object file. In one embodiment, the operating system
loads the table 1300/1600 into the microprocessor 100 prior
to loading and running the encrypted program so that the
branch and switch key instructions 1200/1500 may have
access to it. In one embodiment, the post-processor inserts
instructions into the program that load the table 1300/1600
into the microprocessor 100 before any branch and switch
key instructions 1200/1500 are executed. Flow proceeds to
block 1804.

At block 1804, similar to the operation described above
with respect to block 1104 of FIG. 11, the post-processor
replaces each pre-run-time-target address-determinable
inter-chunk branch instruction with a branch and switch key
instruction 900 of FIG. 9 having an appropriate key register
file index field 904 value based on the chunk into which the
target address of the branch instruction falls. Flow proceeds
to block 1805.

At block 1805, the post-processor replaces each run-time-
only-target address-determinable branch instruction with a
branch and switch key instruction 1200 of FIG. 12 or 1500
of FIG. 15, depending upon which type of table 1300/1600
was created at block 1803. Flow proceeds to block 1806.

At block 1806, the post-processor encrypts the program.
The post-processor is aware of the memory location and
master key register 142 values associated with each chunk,
which it uses to encrypt the program. Flow ends at block
1806.

Referring now to FIG. 19, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 to accommodate
task switching between an encrypted program and a plain
text program according to the present invention is shown.
Flow begins at block 1902.

10

15

20

25

30

35

40

45

50

55

60

65

22

At block 1902, the E bit 402 of the EFLLAGS register 128
and the E bit 148 of the control register 144 of FIG. 1 are
cleared by a reset of the microprocessor 100. Flow proceeds
to block 1904.

At block 1904, after executing its reset microcode that
performs its initialization, the microprocessor 100 begins
fetching and executing user program instructions, such as
system firmware, which are plain text program instructions.
In particular, because the E bit 148 is clear, the fetch unit 104
treats the fetched instruction data 106 as plain text instruc-
tions, as described above. Flow proceeds to block 1906.

At block 1906, system software (such as the operating
system, firmware, BIOS, etc.) receives a request to run an
encrypted program. In one embodiment, the request to run
an encrypted program is accompanied by or indicated by a
switch to the secure execution mode of the microprocessor
100, discussed above. In one embodiment, the microproces-
sor 100 is only allowed to operate in decryption mode (i.e.,
with the E bit 148 set) when operating in the secure
execution mode. In one embodiment, the microprocessor
100 is only allowed to operate in decryption mode when
operating in a system management mode, such as the
well-known SMM of the x86 architecture. Flow proceeds to
block 1908.

At block 1908, the system software loads the master key
registers 142 with their initial values associated with the first
chunk of the program that will execute. In one embodiment,
the system software executes a switch key instruction 600 to
load the master key registers 142. Prior to loading of the
master key registers 142, the key register file 124 may be
loaded using one or more load key instructions 400. In one
embodiment, prior to the loading of the master key registers
142 and key register file 124, the secure memory area 122
may be written with key values via a secure channel accord-
ing to well-known techniques, such as an AES- or RSA-
encrypted channel, to avoid snooping of the values by an
attacker. As discussed above, the values may be stored in a
secure non-volatile memory, such as a flash memory,
coupled to the microprocessor 100 via a private serial bus,
or stored in a non-volatile write-once memory of the micro-
processor 100. As discussed above, the program may be
included in a single chunk. That is, the program may include
no switch key instructions 600 such that the entire program
is decrypted with a single set of master key register 142
values. Flow proceeds to block 1916.

At block 1916, as control is transferred to the encrypted
program, the microprocessor 100 sets the EFLAGS register
128 E bit 402 to indicate that the currently executing
program is encrypted, and sets the control register 144 E bit
148 to place the fetch unit 104 in decryption mode. The
microprocessor 100 also causes the pipeline to be flushed of
instructions, similar to the flush operation performed at
block 706 of FIG. 7. Flow proceeds to block 1918.

At block 1918, the fetch unit 104 fetches the instructions
106 of the encrypted program and decrypts and executes
them in decryption mode as described above with respect to
FIGS. 1 through 3. Flow proceeds to block 1922.

At block 1922, as the microprocessor 100 is fetching and
executing the encrypted program, the microprocessor 100
receives an interrupting event. The interrupting event may
be an interrupt, an exception (such as a page fault), or a task
switch, for example. When an interrupting event occurs, all
pending instructions within the microprocessor 100 pipeline
are flushed. Therefore, if there are any instructions in the
pipeline that were fetched as encrypted instructions, they are
flushed. Furthermore, all instruction bytes fetched from the
instruction cache 102 that may be waiting in buffers of the

US 9,461,818 B2

23
fetch unit 104 to be decrypted and the decode unit 108 to be
decoded are flushed. In one embodiment, microcode is
invoked in response to the interrupting event. Flow proceeds
to block 1924.

At block 1924, the microprocessor 100 saves the
EFLAGS register 128 (along with the other architectural
state of the microprocessor 100, including the current
instruction pointer value of the interrupted encrypted pro-
gram) to a stack memory. Advantageously, the E bit 402
value of the encrypted program is saved so that it may be
subsequently restored (at block 1934). Flow proceeds to
block 1926.

At block 1926, as control is transferred to the new
program (e.g., interrupt handler, exception handler, or new
task), the microprocessor 100 clears the EFLLAGS register
128 E bit 402 and the control register 144 E bit 148, since
the new program is a plain text program. That is, the
embodiment of FIG. 19 assumes only one encrypted pro-
gram is allowed to run at a time on the microprocessor 100
and an encrypted program was already running, i.e., was
interrupted. However, see FIGS. 21 through 26 for a descrip-
tion of alternate embodiments. Flow proceeds to block 1928.

At block 1928, the fetch unit 104 fetches the instructions
106 of the new program in plain text mode as described
above with respect to FIGS. 1 through 3. In particular, the
clear value of the control register 144 E bit 148 controls mux
154 such that the instruction data 106 is XORed with the
zeroes 176 such that the instruction data 106 is not
decrypted. Flow proceeds to block 1932.

At block 1932, the new program executes a return from
interrupt instruction (e.g., x86 IRET) or similar instruction
to cause control to return to the encrypted program. In one
embodiment, the return from interrupt instruction is imple-
mented in microcode. Flow proceeds to block 1934.

At block 1934, in response to the return from interrupt
instruction, as control is transferred back to the encrypted
program, the microprocessor 100 restores the FLAGS reg-
ister 128, thereby restoring the EFLAGS register 128 E bit
402 to a set value that was saved at block 1924. Flow
proceeds to block 1938.

At block 1938, as control is transferred back to the
encrypted program, the microprocessor 100 updates the
control register 144 E bit 148 with the value from the
EFLAGS register 128 E bit 402, i.e., with a set value, such
that the fetch unit 104 re-commences fetching and decrypt-
ing the encrypted program instruction data 106. Flow pro-
ceeds to block 1942.

At block 1942, the microcode causes the microprocessor
100 to branch to the instruction pointer value that was saved
onto the stack at block 1924, which causes all x86 instruc-
tions in the microprocessor 100 to be flushed and which
causes all micro-ops in the microprocessor 100 to be flushed.
This includes all instruction bytes 106 fetched from the
instruction cache 102 that may be waiting in buffers of the
fetch unit 104 to be decrypted and the decode unit 108 to be
decoded. Flow proceeds to block 1944.

At block 1944, the fetch unit 104 resumes fetching the
instructions 106 of the encrypted program and decrypting
and executing them in decryption mode as described above
with respect to FIGS. 1 through 3. Flow ends at block 1944.

Referring now to FIG. 20, a flowchart illustrating opera-
tion of system software running on the microprocessor 100
of FIG. 1 according to the present invention is shown. FIG.
20 accompanies the embodiment of FIG. 19. Flow begins at
block 2002.

10

15

20

25

30

35

40

45

50

55

60

65

24

At block 2002, a request is made to the system software
to run a new encrypted program. Flow proceeds to decision
block 2004.

At decision block 2004, the system software determines
whether an encrypted program is already one of the running
programs in the system. In one embodiment, the system
software maintains a flag to indicate whether an encrypted
program is already one of the running programs in the
system. If an encrypted program is already one of the
running programs in the system, flow proceeds to block
2006; otherwise, flow proceeds to block 2008.

At block 2006, the system software waits until the
encrypted program completes and is no longer one of the
running programs in the system. Flow proceeds to block
2008.

At block 2008, the microprocessor 100 allows the new
encrypted program to run. Flow ends at block 2008.

Referring now to FIG. 21, a block diagram illustrating the
fields of the EFLAGS register 128 of FIG. 1 according to an
alternate embodiment of the present invention is shown. The
EFLAGS register 128 of FIG. 21 is similar to the embodi-
ment of FIG. 4; however, the embodiment of FIG. 21 also
includes index bits 2104. According to one embodiment, the
index bits 2104, like the E bit 402, comprise bits that are
conventionally RESERVED by the x86 architecture. The
index field 2104 accommodates switching between multiple
encrypted programs, as described below. Preferably, the
switch key instruction 600 and branch and switch key
instructions 900/1200 update the EFLAGS register 128
index field 2104 with the value specified in the respective
key register file index field 604/904/1304.

Referring now to FIG. 22, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 having an EFLAGS
register 128 according to FIG. 21 to accommodate task
switching between multiple encrypted programs according
to the present invention is shown. Flow begins at block
2202.

At block 2202, a request is made to the system software
to run a new encrypted program. Flow proceeds to decision
block 2204.

At decision block 2204, the system software determines
whether there is space available in the key register file 124
to accommodate a new encrypted program. In one embodi-
ment, the request made at block 2202 specifies the amount
of space needed in the key register file 124. If there is space
available in the key register file 124 to accommodate the
new encrypted program, flow proceeds to block 2208;
otherwise, flow proceeds to block 2206.

At block 2206, the system software waits until there is
space available in the key register file 124 to accommodate
the new encrypted program by waiting until one or more
encrypted programs complete. Flow proceeds to block 2208.

At block 2208, the system software allocates the space in
the key register file 124 to the new encrypted program and
populates the index field 2104 in the EFLAGS register 128
accordingly to indicate the location of the newly allocated
space in the key register file 124. Flow proceeds to block
2212.

At block 2212, the system software loads the key register
file 124 locations allocated at block 2208 with the key values
for the new program. As discussed above, this may be from
the secure memory area 122 using the load key instruction
400 or, if necessary, from a location outside the micropro-
cessor 100 in a secure manner. Flow proceeds to block 2214.

At block 2214, the system software loads the master key
registers 142 from the key register file 124 based on the key
register file index field 604/904/1304. In one embodiment,

US 9,461,818 B2

25

the system software executes a switch key instruction 600 to
load the master key registers 142. Flow proceeds to block
2216.

At block 2216, as control is transferred to the encrypted
program, the microprocessor 100 sets the EFLAGS register
128 E bit 402 to indicate that the currently executing
program is encrypted, and sets the control register 144 E bit
148 to place the fetch unit 104 in decryption mode. Flow
ends at block 2216.

Referring now to FIG. 23, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 having an EFLAGS
register 128 according to FIG. 21 to accommodate task
switching between multiple encrypted programs according
to the present invention is shown. Flow begins at block
2302.

At block 2302, a currently running program executes a
return from interrupt instruction to cause a task switch to
occur to a new program that was previously executing but
was swapped out and whose architectural state (e.g.,
EFLAGS register 128, instruction pointer register, and gen-
eral purpose registers) was saved onto a stack in memory. As
mentioned above, in one embodiment, the return from
interrupt instruction is implemented in microcode. The cur-
rently running program and the new program may be an
encrypted program or a plain text program. Flow proceeds
to block 2304.

At block 2304, the microprocessor 100 restores from the
stack in memory the EFLAGS register 128 for the new
program. That is, the microprocessor 100 loads the EFLAGS
register 128 with the EFLAGS register 128 value that was
previously saved onto the stack when the new program (i.e.,
the program now being swapped back in) was swapped out.
Flow proceeds to decision block 2306.

At decision block 2306, the microprocessor 100 deter-
mines whether the E bit 402 in the restored EFLLAGS register
128 is set. If so, flow proceeds to block 2308; otherwise,
flow proceeds to block 2312.

At block 2308, the microprocessor 100 loads the master
key registers 142 from the key register file 124 based on the
EFLAGS register 128 index field 2104 value that was
restored at block 2304. Flow proceeds to block 2312.

At block 2312, the microprocessor 100 updates the con-
trol register 144 E bit 148 with the EFLAGS register 128 E
bit 402 value that was restored at block 2304. Thus, if the
new program is an encrypted program, the fetch unit 104
will be placed in decryption mode and otherwise it will be
placed in plain text mode. Flow proceeds to block 2314.

At block 2314, the microprocessor 100 restores the
instruction pointer register with the value from the stack in
memory and causes a branch to the instruction pointer value,
which causes all x86 instructions in the microprocessor 100
to be flushed and which causes all micro-ops in the micro-
processor 100 to be flushed. This includes all instruction
bytes 106 fetched from the instruction cache 102 that may be
waiting in buffers of the fetch unit 104 to be decrypted and
the decode unit 108 to be decoded. Flow proceeds to block
2316.

At block 2316, the fetch unit 104 resumes fetching the
instructions 106 of the new program as described above with
respect to FIGS. 1 through 3, either in decryption mode or
plain text mode according to the value of the control register
144 E bit 148 restored at block 2312. Flow ends at block
2316.

Referring now to FIG. 24, a block diagram illustrating a
single register of the key register file 124 of FIG. 1 according
to an alternate embodiment of the present invention is
shown. According to the embodiment of FIG. 24, each key

10

15

20

25

30

35

40

45

50

55

60

65

26
register file 124 further includes a bit, referred to as the kill
(K) bit 2402. The K bit 2402 accommodates multitasking by
the microprocessor 100 between multiple encrypted pro-
grams that collectively require more space than the size of
the key register file 124 space, as described in more detail
below.

Referring now to FIG. 25, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 having an EFLAGS
register 128 according to FIG. 21 and a key register file 124
according to FIG. 24 to accommodate task switching
between multiple encrypted programs according to an alter-
nate embodiment of the present invention is shown. The
flowchart of FIG. 25 is similar to the flowchart of FIG. 22;
however, if it is determined at decision block 2204 that there
is no space available in the key register file 124, flow
proceeds to block 2506 rather than to block 2206 which does
not exist in FIG. 25; otherwise, flow proceeds to blocks 2208
through 2216 of FIG. 22.

At block 2506, the system software allocates space (i.e.,
registers) within the key register file 124 that is already in
use by (i.e., has already been allocated to) another encrypted
program and sets the K bit 2402 of the allocated registers
and populates the index field 2104 in the EFLAGS register
128 accordingly to indicate the location of the newly allo-
cated space in the key register file 124. The K bit 2402 is set
because the key values of the other encrypted program in the
allocated registers will be clobbered at block 2212 with the
new values of the new encrypted program. However, advan-
tageously as described below with respect to FIG. 26, the
key values of the other encrypted program will be re-loaded
at block 2609 when the other encrypted program is swapped
back in. Flow proceeds from block 2506 to blocks 2212
through 2216 of FIG. 22.

Referring now to FIG. 26, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 1 having an EFLAGS
register 128 according to FIG. 21 and a key register file 124
according to FIG. 24 to accommodate task switching
between multiple encrypted programs according to an alter-
nate embodiment of the present invention is shown. The
flowchart of FIG. 26 is similar to the flowchart of FIG. 23;
however, if it is determined at decision block 2306 that the
EFLAGS register 128 E bit 402 is set, flow proceeds to
decision block 2607 rather than to block 2308.

At decision block 2607, the microprocessor 100 deter-
mines whether the K bit 2402 of any of the key register file
124 registers specified by the EFLAGS register 128 index
field 2104 value (which was restored at block 2304) are set.
If so, flow proceeds to block 2609; otherwise, flow proceeds
to block 2308.

At block 2609, the microprocessor 100 generates an
exception to an exception handler. In one embodiment, the
exception handler is included in the system software. In one
embodiment, the exception handler is provided by the secure
execution mode (SEM) architecture. The exception handler
re-loads the keys of the restored encrypted program (i.e., the
encrypted program that is now being swapped back in) into
the key register file 124 based on the EFLAGS register 128
index field 2104 value that was restored at block 2304. The
exception handler may function similar to the manner
described above with respect to block 1908 of FIG. 19 to
load the keys of the restored encrypted program into the key
register file 124 and, if necessary, into the secure memory
area 122 from outside the microprocessor 100. Additionally,
if the key register file 124 registers that are being re-loaded
are still in use by another encrypted program, the system
software sets the K bit 2402 of the re-loaded registers. Flow

US 9,461,818 B2

27
proceeds from block 2609 to block 2308, and blocks 2308
through 2316 are similar to those of FIG. 23.

As may be observed from FIGS. 24 through 26, the
embodiment described therein advantageously enables the
microprocessor 100 to multitask between multiple encrypted
programs that collectively require more space than the size
of the key register file 124 space.

Referring now to FIG. 27, a block diagram illustrating
portions of the microprocessor 100 of FIG. 1 according to an
alternate embodiment of the present invention is shown.
Like numbered elements to FIG. 1 are similar, specifically
the instruction cache 102, fetch unit 104, and key register file
124. However, the fetch unit 104 is modified to include key
switch logic 2712 that is coupled to the master key register
file 142 and to the key register file 124 of FIG. 1. The
microprocessor 100 of FIG. 27 also includes a branch target
address cache (BTAC) 2702. The BTAC 2702 receives the
fetch address 134 of FIG. 1 and is accessed in parallel with
the access of the instruction cache 102 by the fetch address
134. In response to the fetch address 134, the BTAC 2702
provides a branch target address 2706 to the fetch address
generator 164 of FIG. 1; provides a taken/not taken (T/NT)
indicator 2708 and a type indicator 2714 to the key switch
logic 2712; and provides a key register file (KRF) index
2712 to the key register file 124.

Referring now to FIG. 28, a block diagram illustrating in
more detail the BTAC 2702 of FIG. 27 according to the
present invention is shown. The BTAC 2702 includes a
BTAC array 2802 comprising a plurality of BTAC entries
2808, whose contents are described with respect to FIG. 29.
The BTAC 2802 caches information concerning the history
of previously executed branch instructions in order to make
predictions about the direction and target address of the
branch instructions on subsequent executions thereof. More
specifically, the BTAC 2802 makes predictions on subse-
quent fetches of the previously executed branch instructions
based on the fetch address 134 using the cached history
information. The operation of branch target address caches
is well-known in the art of branch prediction. However,
advantageously, the BTAC 2802 according to the present
invention is modified to cache information concerning the
history of previously executed branch and switch key
instructions 900/1200 in order to make predictions about
them. More specifically, the cached history information
enables the BTAC 2802 to predict at fetch time the set of
values that a fetched branch and switch key instruction
900/1200 will load in the master key register 142. This
advantageously enables the switch key logic 2712 to load
the values before the branch and switch key instruction
900/1200 is actually executed, which avoids having to flush
the microprocessor 100 pipeline upon execution of the
branch and switch key instruction 900/1200, as described in
more detail below. Furthermore, according to one embodi-
ment, the BTAC 2802 is also modified to cache information
concerning the history of previously executed switch key
instructions 600 to a similar advantage.

Referring now to FIG. 29, a block diagram illustrating in
more detail the contents of a BTAC entry 2808 of FIG. 28
according to the present invention is shown. Each entry 2808
includes a valid bit 2902 for indicating whether the entry
2808 is valid. Each entry 2808 also includes a tag field 2904
for comparing with a portion of the fetch address 134. If the
index portion of the fetch address 134 selects an entry 2808
whose tag portion of the fetch address 134 matches the tag
2904 that is valid, then the fetch address 134 hits in the
BTAC 2802. Each entry 2808 also includes a target address
field 2906 used for caching target addresses of previously

5

10

15

20

25

30

35

40

45

55

60

65

28

executed branch instructions, including branch and switch
key instructions 900/1200. Each entry 2808 also includes a
taken/not taken (T/NT) field 2908 used for caching direction
history of previously executed branch instructions, including
branch and switch key instructions 900/1200. Each entry
2808 includes a key register file index field 2912 used for
caching the key register file index 904/1304 history of
previously executed branch and switch key instructions
900/1200, as described in more detail below. According to
one embodiment, the BTAC 2802 also caches in the key
register file index 2912 field the key register file index 604
history of previously executed switch key instructions 600.
Each entry 2808 also includes a type field 2914 that indicates
the type of instruction that was previously executed and for
which its history information is cached in the entry 2808.
For example, the type field 2914 may indicate whether the
instruction is a call, return, conditional jump, unconditional
jump, branch and switch key instruction 900/1200, or switch
key instruction 600.

Referring now to FIG. 30, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 27 including the
BTAC 2802 of FIG. 28 according to the present invention is
shown. Flow begins at block 3002.

At block 3002, the microprocessor 100 executes a branch
and switch key instruction 900/1200, as described in more
detail with respect to FIG. 32. Flow proceeds to block 3004.

At block 3004, the microprocessor 100 allocates an entry
2808 in the BTAC 2802 and populates the target address
2906, T/NT 2908, KRF index 2912, and type 2914 fields
with the resolved direction, target address, key register file
index 904/1304, and instruction type, respectively, of the
executed branch and switch key instruction 900/1200 in
order to cache the history of the executed branch and switch
key instruction 900/1200. Flow ends at block 3004.

Referring now to FIG. 31, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 27 including the
BTAC 2802 of FIG. 28 according to the present invention is
shown. Flow begins at block 3102.

At block 3102, the fetch address 134 is applied to the
instruction cache 102 and to the BTAC 2802. Flow proceeds
to block 3104.

At block 3104, the fetch address 134 hits in the BTAC
2802 and the BTAC 2802 outputs the values of the target
address 2906, T/NT 2908, key register file index 2912, and
type 2914 fields of the hitting entry 2808 on the target
address 2706, T/NT 2708, KRF index 2712, and type 2714
outputs, respectively. In particular, the type field 2914 indi-
cates a branch and switch key instruction 900/1200. Flow
proceeds to decision block 3106.

At decision block 3106, the key switch logic 2712 deter-
mines whether the branch and switch key instruction 900/
1200 is predicted taken by the BTAC 2802 by examining the
T/NT output 2708. If the T/NT output 2708 indicates the
branch and switch key instruction 900/1200 is taken, flow
proceeds to block 3112; otherwise, flow proceeds to block
3108.

At block 3108, the microprocessor 100 pipes down along
with the branch and switch key instruction 900/1200 an
indication that a not taken prediction was made by the BTAC
2802. (Additionally, if the T/NT output 2708 indicates the
branch and switch key instruction 900/1200 is taken, at
block 3112 the microprocessor 100 pipes down along with
the branch and switch key instruction 900/1200 an indica-
tion that a taken prediction was made by the BTAC 2802.)
Flow ends at block 3108.

US 9,461,818 B2

29

Atblock 3112, the fetch address generator 164 updates the
fetch address 134 based on the predicted target address 2706
made by the BTAC 2802 at block 3104. Flow proceeds to
block 3114.

At block 3114, the key switch logic 2712 updates the
master key registers 142 with the values from the key
register file 124 at the predicted key register file index 2712
made by the BTAC 2802 at block 3104. In one embodiment,
the key switch logic 2712 stalls the fetch unit 104 from
fetching blocks of instruction data 106, if necessary, until the
master key registers 142 are updated. Flow proceeds to
block 3116.

At block 3116, the fetch unit 104 continues fetching and
decrypting instruction data 106 using the new master key
register 142 values loaded at block 3114. Flow ends at block
3116.

Referring now to FIG. 32, a flowchart illustrating opera-
tion of the microprocessor 100 of FIG. 27 to perform a
branch and switch key instruction 900/1200 according to the
present invention is shown. The flowchart of FIG. 32 is
similar in some ways to the flowchart of FIG. 10 and
like-numbered blocks are similar. Although FIG. 32 is
described with respect to FIG. 10, the method may also be
used with respect to the operation of the branch and switch
key instruction 1200 of FIG. 14. Flow begins at block 1002.

At block 1002, the decode unit 108 decodes a branch and
switch key instruction 900/1200 and traps to the microcode
routine in the microcode unit 132 that implements the
branch and switch key instruction 900/1200. Flow proceeds
to block 1004.

At block 1006, the microcode resolves the branch direc-
tion (i.e., taken or not taken) and target address. Flow
proceeds to decision block 3208.

At decision block 3208, the microcode determines
whether the BTAC 2802 made a prediction for the branch
and switch key instruction 900/1200. If so, flow proceeds to
decision block 3214; otherwise, flow proceeds to block 1008
of FIG. 10.

At decision block 3214, the microcode determines
whether the BTAC 2802 prediction was correct by compar-
ing the piped down BTAC 2802 T/NT 2708 and target
address 2706 predictions with the direction and target
address resolved at block 1006. If the BTAC 2802 prediction
was correct, flow ends; otherwise, flow proceeds to decision
block 3216.

At decision block 3216, the microcode determines
whether the incorrect BTAC 2802 prediction was taken or
not taken. If taken, flow proceeds to block 3222; otherwise,
flow proceeds to block 1014 of FIG. 10.

At block 3222, the microcode restores the master key
registers 142 since they were loaded with incorrect values at
block 3114 of FIG. 31 due to an incorrect prediction of a
taken branch and switch key instruction 900/1200 by the
BTAC 2802. In one embodiment, the key switch logic 2712
includes storage and logic for restoring the master key
registers 142. In one embodiment, the microcode generates
an exception to an exception handler to restore the master
key registers 142. Additionally, the microcode causes the
microprocessor 100 to branch to the next sequential x86
instruction after the branch and switch key instruction
900/1200, which causes all x86 instructions in the micro-
processor 100 to be flushed that are newer than the branch
and switch key instruction 900/1200 and which causes all
micro-ops in the microprocessor 100 to be flushed that are
newer than the micro-op that branches to the target address.
This includes all instruction bytes 106 fetched from the
instruction cache 102 that may be waiting in buffers of the

10

20

25

30

40

45

50

55

60

65

30
fetch unit 104 to be decrypted and the decode unit 108 to be
decoded. As a result of the branch to the next sequential
instruction, the fetch unit 104 begins fetching and decrypt-
ing instruction data 106 from the instruction cache 102 using
the restored set of key values loaded into the master key
registers 142. Flow ends at block 3222.

In addition to the security advantages provided by the
instruction decryption embodiments described above that
are incorporated in the microprocessor 100, the present
inventors have also developed recommended coding guide-
lines that can be used in conjunction with the embodiments
described to weaken statistical attacks on encrypted x86
code based on analysis of actual x86 instruction usage.

First, because an attacker will likely assume all 16 bytes
of fetched instruction data 106 are x86 instructions, the code
should have “holes” in the 16-byte blocks relative to pro-
gram execution flow. That is, the code should include
instructions to jump around some of the instruction bytes to
create holes of unexecuted bytes that can be filled with
appropriate value to increase the entropy of the plaintext
bytes. Additionally, the code can use immediate data values
wherever possible if doing so increases the entropy of the
plaintext. Additionally, the immediate data values may be
chosen to give false clues as to the locations of instruction
opcodes.

Second, the code may include special NOP instructions
that contain “don’t care” fields with appropriate values to
increase entropy. For example, the x86 instruction
0xOF0DO05SxxxxxxxXx is a seven-byte NOP where the last four
bytes can be any value. There are other forms with different
opcodes and differing numbers of don’t care bytes.

Third, many x86 instructions have the same basic func-
tion as other x86 instructions. Where there are equivalent-
function instructions, the code may employ multiple forms
instead of reusing the same instruction and/or use the form
that increases the plaintext entropy. For example, the
instructions 0xC10107 and 0xC10025 do the same thing.
Finally, some equivalent-function instructions have different
length versions, such as OxEB22 and 0xE90022; thus, the
code may employ multiple differing-length equivalent-func-
tion instructions.

Fourth, the x86 architecture allows the use of redundant
or meaningless opcode prefixes that the code may carefully
employ to further increase the entropy. For example, the
instructions 0x40 and 0x2627646567F2F340 mean exactly
the same thing. Because there are only eight “safe” x86
prefixes, they must be sprinkled into the code carefully to
avoid making their frequency too high.

Although embodiments have been described in which the
key expander performs a rotate and add/subtract function on
a pair of master key register values, other embodiments are
contemplated in which the key expander performs a function
on more than two master key register values; additionally,
the function may be different than the rotate and add/subtract
function. Furthermore, embodiments of the switch key
instruction 600 of FIG. 6 and the branch and switch key
instruction 900 of FIG. 9 are contemplated in which the new
key values are loaded into the master key register file 142
from the secure memory area 122 rather than from key
register file 124; and embodiments of the branch and switch
key instruction 1500 of FIG. 15 are contemplated in which
the index field 2104 is used to store an address in the secure
memory area 122. Finally, although embodiments have been
described in which the BTAC 2702 is modified to cache a
KRF index for use with the branch and switch key instruc-
tions 900/1200, embodiments are contemplated in which the

US 9,461,818 B2

31
BTAC 2702 is modified to cache an SMA address for use
with the branch and switch key instructions 1500.

While various embodiments of the present invention have
been described herein, it should be understood that they have
been presented by way of example, and not limitation. It will
be apparent to persons skilled in the relevant computer arts
that various changes in form and detail can be made therein
without departing from the scope of the invention. For
example, software can enable, for example, the function,
fabrication, modeling, simulation, description and/or testing
of the apparatus and methods described herein. This can be
accomplished through the use of general programming lan-
guages (e.g., C, C++), hardware description languages
(HDL) including Verilog HDL, VHDL, and so on, or other
available programs. Such software can be disposed in any
known computer usable medium such as magnetic tape,
semiconductor, magnetic disk, or optical disc (e.g., CD-
ROM, DVD-ROM, etc.), a network, wire line, wireless or
other communications medium. Embodiments of the appa-
ratus and method described herein may be included in a
semiconductor intellectual property core, such as a micro-
processor core (e.g., embodied in HDL) and transformed to
hardware in the production of integrated circuits. Addition-
ally, the apparatus and methods described herein may be
embodied as a combination of hardware and software. Thus,
the present invention should not be limited by any of the
exemplary embodiments described herein, but should be
defined only in accordance with the following claims and
their equivalents. Specifically, the present invention may be
implemented within a microprocessor device which may be
used in a general purpose computer. Finally, those skilled in
the art should appreciate that they can readily use the
disclosed conception and specific embodiments as a basis
for designing or modifying other structures for carrying out
the same purposes of the present invention without departing
from the scope of the invention as defined by the appended
claims.

We claim:
1. A method for encrypting an unencrypted program for
subsequent execution by a microprocessor configured to
decrypt and execute the encrypted program, the method
comprising:
receiving an object file specifying the unencrypted pro-
gram that includes conventional branch instructions
whose target address is determinable prior to a time in
which the microprocessor runs the unencrypted pro-
gram;
obtaining chunk information;
dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;

replacing each of the conventional branch instructions
that specifies a target address that is within a different
chunk than a chunk in which a conventional branch
instruction resides with a branch and switch key
instruction that includes distinct key reference and
branch information fields, the key reference field ref-
erencing a set of encryption keys for encrypting a
targeted chunk, and the branch information field
including information for computing a target address;
and

encrypting the unencrypted program based on the chunk

information and the branch and switch key instruction.

10

15

20

25

30

35

40

45

50

55

60

65

32

2. The method of claim 1, wherein each of the branch and
switch key instructions specifies a storage location within
the microprocessor storing the encryption key data associ-
ated with the chunk that includes the target address specified
by the branch and switch key instruction.
3. The method of claim 1, wherein said encrypting the
unencrypted program based on the chunk information about
the chunks comprises:
for each block of instruction data of each of the chunks,
generating an encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of a block, so that the unencrypted
program is uniquely encrypted as a function of a
location of the unencrypted program in memory.
4. A method, for encrypting an unencrypted program for
subsequent execution by a microprocessor configured to
decrypt and execute the encrypted program, the method
comprising:
receiving an object file specifying the unencrypted pro-
gram that includes conventional branch instructions
whose target address is determinable prior to a time in
which the microprocessor runs the unencrypted pro-
gram;
obtaining chunk information;
dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;

replacing each of the conventional branch instructions
that specifies a target address that is within a different
chunk than a chunk in which a conventional branch
instruction resides with a branch and switch key
instruction;

for each block of instruction data of each of the chunks,

generating an encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of a block by:

selecting first and second key values from the encryption

key data based on a first portion of the memory address;
rotating the first key value based on a second portion of
the memory address;

adding or subtracting the rotated first key value to or from

the second key value based on a third portion of the
memory address to generate the encryption keys;

for each block, performing a Boolean exclusive-OR

(XOR) operation of the block with the generated
encryption key.

5. The method of claim 4, wherein the encryption key data
includes K key values, P is a percentage of possible key
combinations used, and a width of the encryption key and
each of the K key values is W bytes, wherein said selecting,
rotating, and adding or subtracting yields PxW2x(K!/(2x
(K-2)1)) different combination of bytes of the K key values
over a sequence of memory addresses.

6. A method, for encrypting an unencrypted program for
subsequent execution by a microprocessor configured to
decrypt and execute the encrypted program, the method
comprising:

receiving an object file specifying the unencrypted pro-

gram that includes conventional branch instructions
whose target address is determinable prior to a time in
which the microprocessor runs the unencrypted pro-
gram;

obtaining chunk information;

US 9,461,818 B2

33

dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;

replacing each of the conventional branch instructions
that specifies a target address that is within a different
chunk than a chunk in which a conventional branch
instruction resides with a branch and switch key
instruction; and

encrypting the unencrypted program based on the chunk

information and the branch and switch key instruction
through a process that comprises:

for each block of instruction data of each of the chunks,

generating an encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of a block; and

performing a Boolean exclusive-OR (XOR) operation of

the block with the generated encryption key;

wherein the encryption key data includes K key values, a

width of the encryption key and each of the K key
values is W bytes, and P is a percentage of possible key
combinations of the K key values used, wherein said
generating the encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of the block yields an effective
encryption key length of PxW2x(K!/(2x(K-2)!)) bytes.
7. A method for encrypting an unencrypted program for
subsequent execution by a microprocessor configured to
decrypt and execute the encrypted program, the method
comprising:
receiving an object file specifying the unencrypted pro-
gram that includes conventional branch instructions
whose target address is determinable only at a time in
which the microprocessor runs the unencrypted pro-
gram;
obtaining chunk information;
dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;

replacing each of the conventional branch instructions
with a branch and switch key instruction that includes
distinct key reference and branch information fields,
the key reference field referencing a set of encryption
keys for encrypting a targeted chunk, and the branch
information field including information for computing
a target address; and

encrypting the unencrypted program based on the chunk

information and the branch and switch key instruction.

8. The method of claim 7, further comprising:

including the chunk information within the object file for

loading into the microprocessor prior to execution of
the unencrypted program by the microprocessor.

9. The method of claim 8, wherein the chunk information
within the object file for loading into the microprocessor
prior to execution of the unencrypted program specifies for
each of the chunks a storage location within the micropro-
cessor storing the encryption key data associated with the
chunk.

10. The method of claim 7, wherein said encrypting the
unencrypted program based on the chunk information com-
prises:

20

25

30

35

40

45

50

55

60

65

34
for each block of instruction data of each of the chunks,
generating an encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of a block;

performing a Boolean exclusive-OR (XOR) operation of

the block with the generated encryption key.
11. A method, for encrypting an unencrypted program for
subsequent execution by a microprocessor configured to
decrypt and execute the encrypted program, the method
comprising:
receiving an object file specifying the unencrypted pro-
gram that includes conventional branch instructions
whose target address is determinable only at a time in
which the microprocessor runs the unencrypted pro-
gram;
obtaining chunk information;
dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;

replacing each of the conventional branch instructions
with a branch and switch key instruction; and

for each block of instruction data of each of the chunks,

generating an encryption key based on the encryption
key data associated with a chunk and a portion of a
memory address of a block by:

selecting first and second key values from the encryption

key data based on a first portion of the memory address;
rotating the first key value based on a second portion of
the memory address;

adding or subtracting the rotated first key value to or from

the second key value based on a third portion of the
memory address to generate the encryption keys;

for each block, performing a Boolean exclusive-OR

(XOR) operation of the block with the generated
encryption key.
12. The method of claim 11, wherein the encryption key
data includes K key values, P is a percentage of possible key
combinations used, and a width of the encryption key and
each of the K key values is W bytes, wherein said selecting,
rotating, and adding or subtracting yields PxW2x(K!/(2x
(K-2)1)) different combination of bytes of the K key values
over a sequence of memory addresses.
13. A method, for encrypting an unencrypted program for
subsequent execution by a microprocessor configured to
decrypt and execute the encrypted program, the method
comprising:
receiving an object file specifying the unencrypted pro-
gram that includes conventional branch instructions
whose target address is determinable only at a time in
which the microprocessor runs the unencrypted pro-
gram;
obtaining chunk information;
dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;

replacing each of the conventional branch instructions
with a branch and switch key instruction; and

encrypting the unencrypted program based on the chunk
information and the branch and switch key instruction
through a process that comprises:

US 9,461,818 B2

35
for each block of instruction data of each of the chunks,
generating an encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of a block; and
performing a Boolean exclusive-OR (XOR) operation of
the block with the generated encryption key; wherein
the encryption key data includes K key values, a width
of the encryption key and each of the K key values is
W bytes, and P is a percentage of possible key com-
binations of the K key values used, wherein said
generating the encryption key based on the encryption
key data associated with the chunk and a portion of a
memory address of the block yields an effective
encryption key length of PxW2x(K!/(2x(K-2)!)) bytes.
14. A computer program product encoded in at least one
non-transitory computer usable medium for use with a
computing device, the computer program product compris-
ing:
computer usable program code embodied in said medium,
for specifying a method for encrypting an unencrypted
program for subsequent execution by a microprocessor
configured to decrypt and execute the encrypted pro-
gram, the computer usable program code comprising:
first program code for receiving an object file specifying
the unencrypted program that includes conventional
branch instructions whose target address may be deter-
mined is determinable prior to the time in which the
microprocessor runs the unencrypted program;
second program code for obtaining chunk information,
dividing the unencrypted program into a sequence of
chunks, wherein each of the chunks comprises a
sequence of instructions, wherein the chunk informa-
tion further comprises encryption key data associated
with each of the chunks, wherein the encryption key
data associated with each of the chunks is distinct;
third program code for replacing each of the conventional
branch instructions that specifies a target address that is
within a different chunk than a chunk in which a
conventional branch instruction resides with a branch
and switch key instruction; and

20

36

fourth program code for generating an encryption key
based on the encryption key data, for each block of
instruction data for each of the chunks, by:

selecting first and second key values from the encryption

key data based on a first portion of the memory address;
rotating the first key value based on a second portion of
the memory address; and
adding or subtracting the rotated first key value to or from
the second key value based on a third portion of the
memory address to generate the encryption key;

performing a Boolean exclusive-OR (XOR) operation of
a block with the generated encryption key.

15. The computer program product of claim 14, wherein
each of the branch and switch key instructions specifies a
storage location within the microprocessor storing the
encryption key data associated with the chunk that includes
the target address specified by the branch and switch key
instruction.

16. The computer program product of claim 14, wherein
the encryption key data includes K key values, P is a
percentage of possible key combinations used, and a width
of the encryption key and each of the K key values is W
bytes, wherein said selecting, rotating, and adding or sub-
tracting yields PxW?2x(K!/(2x(K-2)")) different combina-
tion of bytes of the K key values over a sequence of memory
addresses.

17. The computer program product of claim 14, wherein
the encryption key data includes K key values, P is a
percentage of possible key combinations of the K key values
used, and a width of the encryption key and each of the K
key values is W bytes, wherein said generating the encryp-
tion key based on the encryption key data associated with the
chunk and a portion of a memory address of the block yields
an effective encryption key length of PxW2Zx(K!/(2x
(K-2)1)) bytes.

18. The computer program product of claim 14, wherein
the at least one non-transitory computer usable medium is
selected from a set of a disk, tape, or other magnetic, optical,
or electronic storage medium.

#* #* #* #* #*

